摘要
针对多传感器观测数据质量不同且未知时,多传感器量测迭代更新高斯混合概率假设密度(GM-PHD)滤波器跟踪算法的结果对更新顺序敏感的问题,该文提出一种多传感器自适应量测迭代更新GM-PHD跟踪算法AIUGM-PHD。首先基于多传感器融合一致性度量,提出一种用于在线评估各传感器跟踪结果质量的方法;然后对多传感器迭代融合顺序进行优化,最后构建相应的多传感器GM-PHD融合跟踪算法。为了解决多传感器自适应顺序迭代融合无法体现传感器质量差距的问题,提出了一种自适应带权伪量测迭代更新GM-PHD跟踪算法PAIU-GMPHD。仿真结果表明,与常规多传感器迭代更新GM-PHD跟踪算法相比,所提算法能够获得鲁棒性更好、精度更高的跟踪结果。
For the problem that the results of multi-sensor measurement iteratively updating Gaussian Mixture Probability Hypothesis Density(GM-PHD)tracking algorithm is sensitive to the updating order if the qualities of multi-sensor observation data are different and unknown,a multi-sensor Adaptive observation Iteratively Updating GM-PHD tracking algorithm(AIU-GM-PHD)is proposed.Firstly,based on the multi-sensor fusion consistency measure,a method is proposed to evaluate the online quality of each sensor's tracking results.Then,the sequence of multi-sensor iterative fusion is optimized.Finally,the corresponding multi-sensor GM-PHD fusion tracking algorithm is constructed.To solve the problem that the multi-sensor adaptive order iterative fusion can not reflect the sensor quality gap,an Adaptive Iteratively Updating GM-PHD tracking algorithm PAIU-GM-PHD with weighted pseudo measurements is proposed.The simulation results show that,compared with the conventional multi-sensor iterative update GM-PHD tracking algorithm,the proposed algorithms can obtain more robust and accurate tracking results.
作者
申屠晗
李凯斌
荣英佼
李彦欣
郭云飞
SHENTU Han;LI Kaibin;RONG Yingjiao;LI Yanxin;GUO Yunfei(Institution of Information and Control,Hangzhou Dianzi University,Hangzhou 310018,China;Science and Technology on Near-Surface Detection Laboratory,Wuxi 214035,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2022年第12期4168-4177,共10页
Journal of Electronics & Information Technology
基金
基础加强计划技术领域基金(2021-JCJQ-JJ-0301)
近地面探测技术重点实验室基金(6142414200203)
浙江省属高校基本科研业务费专项资金(GK219909299001-405)
浙江省自然科学基金重点项目(LZ20F010002)
国家大学生创新创业训练计划(202110336022)。
关键词
多传感器多目标跟踪
随机有限集
自适应融合
高斯混合概率假设密度滤波器
量测迭代更新
Multi-sensor multi-target tracking
Random finite set
Adaptive fusion
Gaussian Mixture Probability Hypothesis Density(GM-PHD)filter
Measurement iteratively updating
作者简介
申屠晗,男,1984年生,副教授,研究方向为信息融合、目标检测与跟踪、机器学习与智能信息处理等;李凯斌,男,1997年生,硕士生,研究方向为多传感器多目标跟踪、SLAM;通信作者:荣英佼,女,1978年生,工程师,研究方向为雷达信号处理、信息融合,yingjiao_rong@hotmail.com;郭云飞,男,1978年生,教授,研究方向为目标跟踪、信息融合。