期刊文献+

基于图正则化和Schatten-p范数最小化的交通数据恢复 被引量:3

Traffic Data Imputation Based on Graph Regularization and Schatten-p Norm Minimization
在线阅读 下载PDF
导出
摘要 为充分利用交通数据低秩特性与局部近邻关系,准确恢复交通数据采集系统中的缺失数据,首先,应用基于核范数的低秩矩阵补全模型对交通数据矩阵进行预插补,以获得缺失值的初始估计,基于此,构建表征数据局部近邻结构的图模型;然后,提出融合图正则化和Schatten-p范数最小化的交通数据缺失值恢复模型;进一步,提出基于交替方向乘子框架的优化算法,求解缺失值恢复的最优化问题,得到最终的数据恢复结果;最后,用实际的高速公路交通流量和速度数据比较多种方法的恢复误差,同时给出所提方法的参数敏感性分析.实验结果表明:在完全随机缺失、随机缺失和混合缺失模式下,缺失率为10%~50%时,相比于局部最小二乘、概率主成分分析和低秩矩阵补全等方法,基于图正则化和Schatten-p范数最小化的算法恢复误差降低了3.02%~28.49%. To make full use of the low-rank characteristics and local neighbor relationship of the traffic data, and accurately recover the missing data in traffic data acquisition system, firstly, the traffic data matrix is preinterpolated by the low-rank matrix completion model based on kernel norm to obtain the initial estimate of the missing data. Based on this, a graph model that characterizes the local neighbor structure of the data is constructed. Then, a missing value imputation model combining graph regularization and Schatten-p norm minimization is proposed. Furthermore, an optimization algorithm based on alternating direction multiplier framework is proposed to solve the optimization of missing value imputation, so as to obtain the final imputation result. Finally, the real expressway traffic volume and speed data are used to compare the imputation errors of several methods, and the parameter sensitivity of the proposed method is analyzed. The experimental results show that compared with local least squares, probabilistic principal component analysis and low-rank matrix completion, the proposed method reduces the error of traffic data imputation by 3.02%-28.49% when the missing rate is 10%-50% in missing completely at random mode, missing at random mode and mixed missing mode.
作者 陈小波 梁书荣 柯佳 陈玲 胡煜 CHEN Xiaobo;LIANG Shurong;KE Jia;CHEN Ling;HU Yu(Automotive Engineering Research Institute,Jiangsu University,Zhenjiang 212013,China;School of Management,Jiangsu University,Zhenjiang 212013,China)
出处 《西南交通大学学报》 EI CSCD 北大核心 2022年第6期1326-1333,共8页 Journal of Southwest Jiaotong University
基金 国家自然科学基金(61773184) 国家重点研发计划(2018YFB0105000) 江苏省六大人才高峰高层次人才项目(JXQC-007)。
关键词 智能交通 数据恢复 Schatten-p范数 交通数据 图正则化 intelligent transportation data imputation Schatten-p norm traffic data graph regularization
作者简介 第一作者:陈小波(1982-),男,研究员,博士,研究方向为智能交通,E-mail:1000003032@ujs.edu.cn。
  • 相关文献

参考文献2

二级参考文献10

共引文献14

同被引文献35

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部