摘要
Carbon fiber reinforced polymer(CFRP)composites with high load-bearing capacity are currently ideal materials in tribological load systems.One of the unique features during the friction process of CFRP/metal is the in-situ formation of an ultrathin and uniform transfer film on the metal surface,and the related initial/transfer mechanism is very important but still unclear.Recent studies mainly focus on the one-way transfer process of CFRP to the metal surface,that is,forward transfer;whereas another easily overlooked issue is that the metal material also transfers backward to the CFRP surface.Herein,we firstly prepared carbon fiber/epoxy resin composites(CF/EP)by the hot-pressing method and then carried out friction tests with iron alloy as the control material.The underlying mechanism of the forward/backward transfer process is revealed by controlling the morphological evolution and iron content of the transfer film on worn CF/EP.According to the variation law of friction coefficient with time,the interfacial friction is divided into three different stages,among which the behaviours of“micro-convex contact”and“epoxy exfoliation”occur throughout the whole procedure.We believe this work could provide a meaningful reference for studying the friction behaviour and mechanism,especially the forward and backward transfer between composites/metals,and further broaden its emerging applications in future energy,aerospace and rail transportation.
基金
supported by the Natural Science Foundation of Guangdong Province,China (Grant No. 2021B1515020087)
the National Natural Science Foundation of China (Grant No. 51775197)
。
作者简介
Corresponding author:WANG WenTao,email:mewtwang@mail.scut.edu.cn。