期刊文献+

基于GST-ECNN的运动想象脑电信号识别方法 被引量:3

Motor Imagery EEG Signal Recognition Method Based on GST-ECNN
在线阅读 下载PDF
导出
摘要 在对脑电信号的解码研究中,存在着现有时频分析方法对高频信号处理能力有限,多通道信号信息冗余,常用卷积神经网络分类器ReLU激活函数受学习速率的影响较大,对不同层采用相同的正则化很难获得满意结果等问题。为此,提出了一种基于广义S变换特征提取和增强卷积神经网络分类相结合的方法,同时提出一种结合Relief算法和向前选择搜索策略的包裹式方法进行通道选择。结果表明,提出的方法利用较少的信号通道,具有更强的特征提取和分类的能力,在第Ⅳ届BCI的数据集I上取得最高98.44±1.5%的分类准确率,高于其他现有算法。该方法良好的分类性能不仅减少了计算消耗,也有效提高了分类准确率,对脑电信号特征提取和分类具有一定的参考意义。 In the research on the decoding of EEG signals,there are existing time-frequency analysis methods that have limited high-frequency signal processing capabilities,multi-channel signal information redundancy,and the ReLU activation function of the commonly used convolutional neural network classifier is greatly affected by the learning rate.It is difficult to obtain satisfactory results with the same regularization for different layers.To solve the above problems,a method based on the combination of generalized S-transform feature extraction and enhanced convolutional neural network classification is proposed.At the same time,a wrapping method combining Relief algorithm and forward selection search strategy is proposed for channel selection.The results show that the proposed method uses less signal channels and achieves better ability of feature extraction and classification.The highest classification accuracy of 98.44±1.5%is obtained in the fourth BCI dataset I,which is higher than other existing algorithms.The good classification performance of this study not only reduces the calculation consumption,also effectively improves the classification accuracy,which has a certain reference significance for EEG feature extraction and classification.
作者 金海龙 邬霞 樊凤杰 王金萍 JIN Hai-long;WU Xia;FAN Feng-jie;WANG Jin-ping(Measurement Technology and Instrumentation Key Lab of Hebei Province,Yanshan University,Qinhuangdao,Hebei 066004,China)
出处 《计量学报》 CSCD 北大核心 2022年第10期1341-1347,共7页 Acta Metrologica Sinica
基金 国家自然科学基金(61201111) 中央引导地方科技发展资金(226Z5001G)。
关键词 计量学 脑电信号 运动想象 广义S变换 增强卷积神经网络 包裹式通道选择 脑-机接口 metrology EEG signal motor imagery generalized S transform enhanced convolutional neural network wrapped channel selection brain-computer interface
作者简介 第一作者:金海龙(1966-),男,黑龙江海林人,燕山大学教授,主要从事脑-机接口、智能康复等方面的研究。Email:hljin@ysu.edu.cn;通讯作者:樊凤杰(1977-),女,河北秦皇岛人,燕山大学副教授,主要从事数据挖掘及模式识别、脑电信号分析与处理等方面的研究。Email:ffj@ysu.edu.cn。
  • 相关文献

参考文献5

二级参考文献38

  • 1刘长生,唐艳,汤井田.基于独立分量分析的脑电中眼电伪迹消除[J].计算机工程与应用,2007,43(17):230-232. 被引量:13
  • 2Duru D A, Akdeniz G, Kara E. Epileptic source localizations based on EEG and SDE measurements [ C ]// the 15th National Biomedical Engineering Meeting, Antalya, 2010.
  • 3Millan J R, Mourino J. Asynchronous BCI and local neural classifiers: An overview of the adaptive brain interface porject [ J ]. IEEE Transactions on Neural Systerms and Rehabilitation Engineering, 2003,11 ( 2 ) : 159 - 161.
  • 4Liao F, Wang F, Zhou P. Deriving respiratory signals from ECG by filtering method [ C ]//3rd International Conference on Computer Research and Development, Shanghai, 2011.
  • 5Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non - stationary time series analysis [ J 1. J Proc R Soc Londn A, 1998, 454(1971) :903 -995.
  • 6Sharabaty H, Jammes B, Esteve D. EEG analysis using HHT: One step toward automatic drowsiness scoring [ C]//Proceedings of the 22nd International Conference on Advanced Information Networking and Applications Workshops, Gino Wan, Okinawa, Japan, 2008.
  • 7ChengJL, Zou D H S, Sun X Y, et al. An improved method on reducing measurement noise based on Hilbert - Huang Transform [ C ]//IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, 2009, 627- 630.
  • 8高上凯.浅谈脑—机接口的发展现状与挑战[J].中国生物医学工程学报,2007,26(6):801-803. 被引量:70
  • 9戴桂平,刘彬.基于小波去噪和EMD的信号瞬时参数提取[J].计量学报,2007,28(2):158-162. 被引量:42
  • 10罗志增,李亚飞,孟明,孙曜.一种基于二代小波变换与盲信号分离的脑电信号处理方法[J].航天医学与医学工程,2010,23(2):137-140. 被引量:7

共引文献42

同被引文献21

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部