期刊文献+

带约束的支撑树形图容量扩张问题 被引量:2

Capacity Expansion Problem of Spanning Arborescence with Constraints
在线阅读 下载PDF
导出
摘要 将通信网络扩张升级问题抽象为带约束的支撑树形图容量扩张问题(CEPAC),并针对该问题进行研究。首先,由0-1背包问题归约出CEPAC问题的实例,进而分析CEPAC问题的NP-困难性。其次,采用支撑树Megiddo参数搜索和拟阵交的Megiddo参数搜索策略,建立支撑树形图多面体与拟阵交之间的关系,将一棵最优支撑树形图通过基本变换转换成与之相邻的最优支撑树形图,为CEPAC问题设计一个(2,1)-近似的带约束的拟阵交算法。最后,考虑最小支撑树形图容量扩张问题(CEPMA),并利用字典序方法对朱–刘算法进行改进求解CEPMA问题。 We consider the problem of communication network expansion and upgrading,which is abstracted as the capacity expansion problem of spanning arborescence with constraints(CEPAC)in directed networks.Firstly,we prove that CEPAC problem is NP-hard by constructing an instance of CEPAC based on 0-1 knapsack problem.Secondly,by Megiddo parameter search of the spanning tree and Megiddo parameter search strategy of matroid intersection,we establish the relationship between the spanning arborescence polytope and the matroid intersection,and transform an optimal spanning arborescence into an adjacent optimal spanning arborescence through the basic transformation.Then,we design a(2,1)-approximate matroid intersection algorithm with constraints for CEPAC problem.Finally,we discuss the capacity expansion problem minimum arborescence(CEPMA)and solve it by modifying ChuLiu-Edmonds algorithm with lexicographical order.
作者 杨子兰 朱娟萍 李睿 YANG Zilan;ZHU Juanping;LI Rui(Department of Information,Lijiang Culture and Tourism College,Lijiang 674199;School of Mathematics and Statistics,Yunnan University,Kunming 650091)
出处 《工程数学学报》 CSCD 北大核心 2022年第5期739-749,共11页 Chinese Journal of Engineering Mathematics
基金 云南省教育厅科学研究基金(2016ZDX152,2017ZDX270,2022J1217)。
关键词 支撑树形图 拟阵交 相邻关系 字典序 spanning arborescence matroid intersection adjacency lexicographical order
作者简介 杨子兰(1985-),女,硕士,副教授.研究方向:组合最优化;通讯作者:朱娟萍,E-mail:jpzhu@ynu.edu.cn。
  • 相关文献

参考文献8

二级参考文献76

  • 1YANGXiaoguang,ZHANGJianzhong.Network expansion by adding arcs and/or nodes[J].Progress in Natural Science:Materials International,2005,15(3):200-204. 被引量:1
  • 2Berman O.Improving the location of minimum facilities through network modification.Annals of Operations Research,1992,40:1-16
  • 3Burkard R E,Klinz B,Zhang J.Bottleneck capacity expansion problem with general budget constraints.RAIRO Recherche Operationelle,2001,35:1-20
  • 4Tarjan R E.Finding optimal branching.Networks,1977,7:25-35
  • 5Frederickson G N Increasing the weight of minimum spanning tree.In:Proceedings of the 7th Annual ACM-SLAM Symposium on Discrete Algorithm (SODA'96),Jan,1996.539-546
  • 6Krumke S O,Marthe M V,Ravi R,Ravi S S.Approximation algorithms for certain network improvement.Journal of Combinatorial Optimization,1998,2:257-288
  • 7Yang C,Zhang J.Two general methods for inverse problems.Applied Mathematics Letters,1999,12:69-72
  • 8Yang C,Zhang J.A constrained maximum capacity paths problem on network.International Journal of Computer and Mathematics,1998,70:19-33
  • 9Yang C,Zhang J.Inverse maximum capacity problem.OR Spektrum,1998,20:97-100
  • 10Zhang J,Yang C,Lin Y.A class of bottleneck expansion problems.Computer and Operations Research,2001,28:505-519

共引文献65

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部