期刊文献+

基于随机森林和双向长短期记忆网络的超短期负荷预测研究 被引量:13

Research on Ultra-short-term Load Forecasting Based on Random Forest and Bidirectional Long-short-term Memory Network
在线阅读 下载PDF
导出
摘要 为了充分挖掘电力负荷与多维特征因素的非线性关系,提高负荷预测精度,提出了一种基于随机森林和双向长短期记忆(bidirectional long-short-term memory,Bi-LSTM)网络的超短期负荷预测方法。首先,采用基于随机森林的特征选择算法,筛选与负荷关联性强的特征作为预测模型的输入;其次,构建Bi-LSTM网络,对特征选择后的负荷数据进行预测;最后,采用某市真实负荷数据进行仿真分析。结果表明,所提方法与传统预测方法相比,具有更高的预测精度,为精确预测具有多维特征因素的负荷提供参考。 In order to fully explore the non-linear relationship between power load and multi-dimensional feature factors and improve the accuracy of load forecasting,an ultra-short-term load forecasting method based on random forest and bidirectional long short-term memory(Bi-LSTM)network was proposed.Firstly,use the feature selection algorithm based on random forest to screen the features with strong correlation with the load as the input of the prediction model;secondly,construct the Bi-LSTM network to predict the load data after feature selection;finally,use real load data of a certain city for simulation analysis.The results show that the method proposed in this article has higher prediction accuracy than traditional prediction methods,and provides a reference for accurately predicting the load with multi-dimensional feature factors.
作者 伍乙杰 黄文灏 赖仕达 陈光宇 贾鹏 李家兴 Wu Yijie;Huang Wenhao;Lai Shida;Chen Guangyu;Jia Peng;Li Jiaxing(School of Electric Power Engineering,Nanjing Institute of Technology,Nanjing Jiangsu 211167,China;State Grid Fujian Electric Power Co.,Ltd.,Sanming Power Supply Branch,Sanming Fujian 353000,China)
出处 《电气自动化》 2022年第5期35-37,40,共4页 Electrical Automation
基金 南京工程学院2021年大学生科技创新基金项目(TB202117043)。
关键词 多维特征 负荷预测 随机森林 双向长短期记忆网络 特征选择 multidimensional characteristics load forecasting random forest bidirectional long-short-term memory(Bi-LSTM) feature selection
作者简介 伍乙杰(1996-),男,江苏宿迁人,硕士研究生,研究方向为电力系统运行与控制。
  • 相关文献

参考文献8

二级参考文献93

共引文献414

同被引文献198

引证文献13

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部