摘要
The paper explores the gravity-driven flow of the thin film of a viscoelastic-fluid-based nanofluids(VFBN)along an inclined plane under non-isothermal conditions and subjected to convective cooling at the free-surface.The Newton’s law of cooling is used to model the convective heat-exchange with the ambient at the free-surface.The Giesekus viscoelastic constitutive model,with appropriate modifications to account for non-isothermal effects,is employed to describe the polymeric effects.The unsteady and coupled non-linear partial differential equations(PDEs)describing the model problem are obtained and solved via efficient semi-implicit numerical schemes based on finite difference methods(FDM)implemented in Matlab.The response of the VFBN velocity,temperature,thermal-conductivity and polymeric-stresses to variations in the volume-fraction of embedded nanoparticles is investigated.It is shown that these quantities all increase as the nanoparticle volume-fraction becomes higher.
作者简介
Corresponding Author:Tiri Chinyoka.Email:tchinyok@vt.edu。