期刊文献+

Evolution of the 3.65-2.58 Ga Mairi Gneiss Complex,Brazil:Implications for growth of the continental crust in the São Francisco Craton 被引量:1

在线阅读 下载PDF
导出
摘要 The composition and formation of the Earth’s primitive continental crust and mantle differentiation are key issues to understand and reconstruct the geodynamic terrestrial evolution,especially during the Archean.However,the scarcity of exposure to these rocks,the complexity of lithological relationships,and the high degree of superimposed deformation,especially with long-lived magmatism,make it difficult to study ancient rocks.Despite this complexity,exposures of the Archean Mairi Gneiss Complex basement unit in the São Francisco Craton offer important information about the evolution of South America’s primitive crust.Therefore,here we present field relationships,LA-ICP-SFMS zircon U-Pb ages,and LA-ICP-MCMS Lu-Hf isotope data for the recently identified Eoarchean to Neoarchean gneisses of the Mairi Complex.The Complex is composed of massive and banded gneisses with mafic members ranging from dioritic to tonalitic,and felsic members ranging from TTG(Tonalite-Trondhjemite-Granodiorite)to granitic composition.Our new data point to several magmatic episodes in the formation of the Mairi Gneiss Complex:Eoarchean(ca.3.65–3.60 Ga),early Paleoarchean(ca.3.55–3.52 Ga),middle-late Paleoarchean(ca.3.49–3.33 Ga)and Neoarchean(ca.2.74–2.58 Ga),with no records of Mesoarchean rocks.Lu-Hf data unveiled a progressive evolution of mantle differentiation and crustal recycling over time.In the Eoarchean,rocks are probably formed by the interaction between the pre-existing crust and juvenile contribution from chondritic to weakly depleted mantle sources,whereas mantle depletion played a role in the Paleoarchean,followed by greater differentiation of the crust with thickening and recycling in the middle–late Paleoarchean.A different stage of crustal growth and recycling dominated the Neoarchean,probably owing to the thickening of the continental crust by collision,continental arc growth,and mantle differentiation.
出处 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第5期110-128,共19页 地学前缘(英文版)
基金 funded by the Fundação de AmparoàPesquisa do Estado de São Paulo(FAPESP)Grant(#2012/15824-6and#2018/25465-0 to EPO) the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)Grant(#305099/2019-1 to EPO) the Institute of Geosciences of the University of Campinas and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(CAPES)PhD Scholarship(#001)to the senior author。
作者简介 Corresponding author:Igor de Camargo Moreira.E-mail address:igordecmoreira@gmail.com。
  • 相关文献

参考文献3

二级参考文献53

  • 1XUPing WUFuyuan XIELiewen YANGYueheng.Hf isotopic compositions of the standard zircons for U-Pbdating[J].Chinese Science Bulletin,2004,49(15):1642-1648. 被引量:95
  • 2Amarasinghe, U., Chaudhuri, A., Collins, A.S., Deb, G., Patranabis-Deb, S., 2015. Evolving provenance in the Proterozoic Pranhita-Godavari Basin, India. Geoscience Frontiers 6, 453-463. http://dx.doi.Org/10.1016/j.gsf.2014.03.009.
  • 3Amato, J.M., Mack, G.H., 2012. Detrital zircon geochronology from the Cambrian-Ordovician Bliss Sandstone, New Mexico: evidence for contrasting Grenville-age and Cambrian sources on opposite sides of the Transcontinental Arch. Geological Society of America Bulletin 124, 1826-1840. http://dx.doi.org/ 10.1130/B30657.1.
  • 4Bickford, M., Chase, R., Nelson, B., 1981. U-Pb studies of zircon cores and overgrowths, and monazite: implications for age and petrogenesis of the northeastern Idaho batholith. The Journal of Geology 89 (4), 433-457.
  • 5Boehnke, P., Harrison, T.M., 2014. A meta-analysis of geochronologically relevant half-lives: what’s the best decay constant? International Geology Review 56, 905-914. http://dx.doi.org/10.1080/00206814.2014.908420.
  • 6Botev, Z.I., Grotowski, J.F., Kroese, D.P., 2010. Kernel density estimation via diffusion. Annals of Statistics 38, 2916-2957.
  • 7Cherniak, D.J., Watson, E.B., 2000. Pb diffusion in zircon. Chemical Geology 172, 5-24.
  • 8Condon, D.J., Bowring, S.A., 2011. Chapter 9 a user’s guide to Neoproterozoic geochronology. Geological Society, London, Memoirs 36, 135-149. http:// dx.doi.org/10.1144/M36.9.
  • 9Corfu, F., 2013. A century of U-Pb geochronology: the long quest towards concordance. Geological Society of America Bulletin 125, 33-47. http://dx.doi.org/ 10.1130/B30698.1.
  • 10Coleman, D.S., Gray, W., Glazner, A.F., 2004. Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32, 433. http://dx.doi.org/ 10.1130/G20220.1.

共引文献182

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部