期刊文献+

高精度室内融合定位算法研究 被引量:5

Research on High Precision Indoor Fusion Positioning Algorithms
在线阅读 下载PDF
导出
摘要 为了实现高精度室内定位,在超宽带(Ultra-Wideband,UWB)定位中运用天牛须搜索(Beetle Antennae Search,BAS)算法,将三维定位的非线性方程组求解问题转化为最优化问题,在行人航位推算(Pedestrian Dead Reckoning,PDR)定位中采用基于时间周期性的峰值检测法与自适应步长估计算法减少伪波峰对步态检测的干扰,以提高2种定位技术的定位精度和可靠性。采用基于PDR航向角动态改变过程噪声Q值的偏移卡尔曼滤波法来识别UWB信号传播情况,从而实现利用UWB定位修正PDR航向角累积误差,利用PDR定位修正UWB非视距(Non-Line-of-Sight,NLOS)定位误差。搭建一套室内定位的实验演示系统进行验证,测试结果表明,所提算法可以有效降低视距(Line-of-Sight,LOS)和NLOS情况下UWB定位误差。特别是在NLOS情况下,融合定位算法比单一UWB定位算法的定位精度提升了约68%,平均定位误差达到0.137 m。 To achieve high precision indoor positioning,the Beetle Antennae Search(BAS)is used in Ultra-Wideband(UWB)positioning,transforming the solution of nonlinear equations of three-dimensional positioning into an optimization problem.The time-periodic peak detection method and self-adaptive step size estimation algorithm are adopted in Pedestrian Dead Reckoning(PDR)positioning to reduce the interference of pseudo peaks on step detection,which will improve the positioning accuracy and reliability of both techniques.The biased Kalman filter whose process noise Q value is dynamically changed with the PDR heading angle is used to identify the signal transmission conditions,as a result,the cumulative error of PDR heading angle is corrected by UWB positioning and the error of UWB positioning in Non-Line-of-Sight(NLOS)condition is corrected by PDR positioning.An experimental indoor positioning system is built for verification,and the testing results show that the proposed fusion method can effectively reduce the UWB positioning error under both Line-of-Sight(LOS)and NLOS conditions.Especially in NLOS condition,as compared with single UWB positioning method,the positioning accuracy of fusion positioning algorithm is improved by about 68%,and the average positioning error is about 0.137 m.
作者 黄健 杨国伟 胡起立 毕美华 李晶 李娜 HUANG Jian;YANG Guowei;HU Qili;BI Meihua;LI Jing;LI Na(School of Communication Engineering,Hangzhou Dianzi University,Hangzhou 310018,China;Institute of Environmental and Chemical Safety Inspection,Hangzhou Customs Technology Center,Hangzhou 311200,China;CETC Key Laboratory of Aerospace Information Applications,Shijiazhuang 050081,China)
出处 《无线电工程》 北大核心 2022年第9期1580-1588,共9页 Radio Engineering
基金 国家自然科学基金(52175460,61405051) 浙江省公益性技术应用研究计划基金资助项目(2017C31067) 浙江省自然科学基金(LY17F050012)。
关键词 室内定位 天牛须搜索算法 偏移卡尔曼滤波 超宽带定位 行人航位推算定位 indoor positioning BAS biased Kalman filter ultra-wideband positioning pedestrian dead reckoning positioning
作者简介 黄健,男,(1997-),就读于杭州电子科技大学电子与通信工程专业,硕士研究生。主要研究方向:室内外定位;通信作者:杨国伟,男,(1984-),博士,副教授。主要研究方向:自由空间光通信、室内外定位和物联网技术;胡起立,女,(1983-),助理经济师。主要研究方向:检测技术;毕美华,女,(1981-),博士,副教授。主要研究方向:光纤通信、保密通信;李晶,女,(1981-),博士,高级工程师。主要研究方向:航天测控、信号处理及光通信;李娜,女,(1982-),硕士,高级工程师。主要研究方向:通信与信息系统。测控遥感与导航定位。
  • 相关文献

参考文献12

二级参考文献58

  • 1李静,刘琚.用卡尔曼滤波器消除TOA中NLOS误差的三种方法[J].通信学报,2005,26(1):130-135. 被引量:39
  • 2西蒙·赫金著 郑宝玉译.自适应滤波器原理[M].北京:电子工业出版社,2003..
  • 3SILVENTOINEN M I.RANTALAINEN T Mobile station emergency locating in GSM[A].IEEE International Conference on Personal Wireless Communications[C].1996.232-238.
  • 4WYLIE M P HOLTZMAN J.The non—line of sight problem in mobile location estimation[A].IEEE International Conference on Universal Personal Communications[C].1996.827-831.
  • 5THOMAS N J,CRUICKSHANK D G M,LAURENSON D I.A robust location estimator architecture with biased Kalman filter of TOA data for wireless systemsIA],IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications[C],2000,296-300.
  • 6LI X,A selective model to suppress NLOS signals in angle-of-arrival(AOA)location estimation[A].The Ninth IEEE International Symposium on Personal,Indoor and Mobile Radio Communications[C].1998.46l—465.
  • 7CHEN P C.A non—line-of-sight error mitigation algorithm in location estimation[A].Wireless Communications and Networking Conference[C].1999.316-320.
  • 8WYLIE.GREEN M PI WANG S S.Robust range estimation in the presence of the non—line—of-sight error[A].IEEE VTS 54th Vehicular Technology Conference[C].2001.101—105.
  • 9王能超.数值分析简明教程[M].北京:高等教育出版社,1999.57-65.
  • 10马振华等.运筹学与最优化理论卷[M].北京:清华大学出版社,1998:8-15.

共引文献150

同被引文献36

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部