期刊文献+

逻辑回归的敏感性分析及在特征选择中的应用

Sensitivity Analysis of Logistic Regression with Application to Feature Selection
在线阅读 下载PDF
导出
摘要 逻辑回归是机器学习中一个非常常用且经典的分类模型。提出了一种逻辑回归的敏感性计算方式,并将其应用在特征选择领域中。以机器学习中的iris数据集为例,首先给出逻辑回归的输出对输入变量的敏感性定义,然后选择敏感性值比较高的属性特征组成特征子集,最后利用分类器对选取的特征进行验证。通过实验结果表明,利用敏感性方法能够选择出有效的特征,该方法是有效和可行的。 Logistic regression is a very popular and classic classification model in machine learning. In this paper, a sensitivity calculation method of logistic regression is proposed and applied in the field of feature selection. Using the iris data set in machine learning as an example, Firstly, the sensitivity of the output of logistic regression to the input variables is given. Secondly, the attribute features with relatively high sensitivity values are selected to form a feature subset. Finally the selected features are verified by the classifier. The experimental results show that the effective features can be selected by using the sensitivity method, and the method is effective and feasible.
作者 王凌妍 张鑫雨 许胜楠 王禹力 甄志龙 WANG Lingyan;ZHANG Xinyu;XU Shengnan;WANG Yuli;ZHEN Zhilong(Tonghua Normal University,Tonghua,Jilin 134002,China)
机构地区 通化师范学院
出处 《信息记录材料》 2022年第7期30-33,共4页 Information Recording Materials
基金 通化师范学院省级大学生创新创业训练计划项目(S202110202063) 吉林省教育厅科学研究项目(JJKH20210533KJ)。
关键词 逻辑回归 敏感性 特征选择 Logistic regression Sensitivity Feature selection
作者简介 王凌妍(1999-),女,河南南阳,本科,研究方向:计算机应用;通信作者:甄志龙。
  • 相关文献

参考文献13

二级参考文献78

  • 1崔文岩,孟相如,李纪真,王明鸣,陈天平,王坤.基于粗糙集粒子群支持向量机的特征选择方法[J].微电子学与计算机,2015,32(1):120-123. 被引量:9
  • 2马金娜,田大钢.基于支持向量机的中文文本自动分类研究[J].系统工程与电子技术,2007,29(3):475-478. 被引量:14
  • 3HASHEM S. Sensitivity analysis for feedforward artificial neural networks with differentiable activation functions [Z]. Proceedings of the 1992 International Joint Conference on Neural Networks, Baltimore, 1992.
  • 4ZURADA J M, MALINOWSKI A, USUI S. Perturbation method for deleting redundant inputs of perceptron networks [J]. Elsevier Science B V,1997,14(2): 177-193.
  • 5WANG Xizhao,LI Chunguo. A new definition of sensitivity for RBFNN and Its applications to feature reduction[J].Lecture Notes in Computer Science,2005,3496 : 81 -86.
  • 6CHOI J Y,CHOI C-H. Sensitivity analysis of multilayer perceptron with differentiable activation functions [J]. IEEE Transactions on Neural Networks, 1992,3(1) : 101 - 107.
  • 7YEUNG D S, SUN Xuequan. Using function approximation to analyze the sensitivity of MLP with antisymmetric squashing activation function [J]. IEEE Transactions on Neural Networks, 2002,13 (1) : 34- 44.
  • 8KARAYIANNIS N B. Reformulated radial basis neural networks trained by gradient decent [J]. IEEE Transactions on Neural Networks, 1999,10(3) : 657-671.
  • 9STEVENSON M, WINTER R, WIDROW B. Sensitivity of feedforward neural networks to weight errors[J]. IEEE Transactions on Neural Networks, 1999,1 (1) : 71 - 80.
  • 10CHENG A Y, YEUNG D S. Sensitivity analysis of neocognitron[J]. IEEE Transactions on Systems, Man and Cybernetics- Part C: Applications and Reviews, 1999,29(2) :238- 249.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部