期刊文献+

欠驱动船舶自适应神经网络有限时间轨迹跟踪 被引量:5

Finite time trajectory tracking of underactuated ship based on adaptive neural network
在线阅读 下载PDF
导出
摘要 [目的]针对欠驱动水面船舶在轨迹跟踪控制中存在的动态不确定和未知扰动问题,设计一种自适应神经网络有限时间轨迹跟踪控制方案。[方法]利用运动学虚拟控制律变换和有界限制的方法进行欠驱动变化。在Backstepping的框架下,利用神经网络重构未知动态,并设计自适应律逼近未知扰动的上界。通过Lyapunov直接法提供严格的理论分析,以证明闭环系统所有信号都是有界的,并使跟踪误差收敛至有界的区间。[结果]仿真结果表明,所提控制方案能够使欠驱动船舶在有限的时间内跟踪上期望的轨迹,且相比传统控制方案,系统误差的收敛速度更快,误差的上、下界也更小,在面对外界未知的时变干扰时还具有良好的鲁棒性。[结论]所做研究可为船舶的轨迹跟踪控制提供有效参考,具有实际的工程意义。 [Objective]Aiming at the problems of dynamic uncertainty and unknown disturbance in the trajectory tracking control of underactuated surface ships,an adaptive neural network finite time trajectory tracking control scheme is designed.[Method]The underactuated variation is carried out using the method of kinematic virtual control law transformation and bounded constraints.Under the framework of Backstepping,neural networks are used to reconstruct unknown dynamics,and an adaptive law is designed to approach the upper bound of unknown disturbances.The Lyapunov direct method provides a rigorous theoretical analysis which proves that all the signals of the closed-loop system are bounded,and the tracking error converges to a bounded interval.[Results]The simulation results show that this control scheme can make an underactuated ship track the desired trajectory in a limited time,the convergence speed of the system error is faster than that of the traditional control scheme,and the upper and lower bounds of the error are also smaller.It also shows good robustness in the face of unknown time-varying interference from the outside world.[Conclusion]The results of this study can provide valuable references for the tracking and control of ship trajectories,giving it great practical engineering significance.
作者 张强 朱雅萍 孟祥飞 张树豪 胡宴才 ZHANG Qiang;ZHU Yaping;MENG Xiangfei;ZHANG Shuhao;HU Yancai(School of Navigation and Shipping,Shandong Jiaotong University,Weihai 264200,China)
出处 《中国舰船研究》 CSCD 北大核心 2022年第4期24-31,共8页 Chinese Journal of Ship Research
基金 国家自然科学基金资助项目(51911540478) 山东省重点研究发展计划资助项目(2019JZZY020712) 山东省研究生教育教学改革研究项目(SDYJG19217) 山东交通学院博士生科研创业基金及山东交通学院攀登研究创新团队计划资助项目(SDJTUC1802)。
关键词 轨迹跟踪 自适应神经网络 有限时间 不确定扰动 欠驱动水面船舶 trajectory tracking adaptive neural network finite time unknown disturbance underactuated surface ship
作者简介 张强,男,1982年生,博士,教授。研究方向:船舶、机器人运动与控制。E-mail:zq20060054@163.com;朱雅萍,女,1996年生,硕士生。研究方向:船舶运动与控制。E-mail:yapingzhu514@163.com;孟祥飞,男,1991年生,硕士生。研究方向:船舶运动与控制。E-mail:brucem2021@126.com;通信作者:张树豪,男,1983年生,讲师。研究方向:船舶运动控制,智能航海技术。E-mail:zsh5225@163.com;胡宴才,男,1987年生,博士,讲师。研究方向:船舶运动与控制。E-mail:yancaihu@126.com。
  • 相关文献

参考文献8

二级参考文献69

  • 1周岗,姚琼荟,陈永冰,周永余,李文魁.不完全驱动船舶直线航迹控制稳定性研究[J].自动化学报,2007,33(4):378-384. 被引量:27
  • 2朱秋芳,姜长生,朱亮,谢祥华.采用TLC方法的超机动飞行控制系统设计[J].南京航空航天大学学报,2007,39(3):379-383. 被引量:6
  • 3Zhu J J, Banker D. X-33 ascent flight control deign by trajectory linearization A singular perturbation approach[C]//AIAA Guidance, Navigation, and Con- trol Conference and Exhibit. Denver : AIAA, 2000: 1-19.
  • 4Khalil H K. Nonlinear systems[M] New Jersey: Prentice-Hall, 2002.
  • 5葛晖.全驱动AUV非线性鲁棒自适应控制技术研究[D].西安:西北工业大学航海学院,2009.
  • 6Kaminer I. Trajectory tracking for autonomous vehi- cles: An integrated approach to guidance and control [J]. AIAA Journal of Guidance, Control, and Dynam- ics, 1998, 21(1) :29-38.
  • 7Karniner I, Pascoal A, Khargonekar P. A velocity al- gorithm for the implementation of gain-scheduled con- trollers[J]. Automatica, 1995, 31(8) :1185-1191.
  • 8Cunha R. Affine parameter-dependent preview con- trol for rotorcraft terrain following flight[J], alaa Journal of Guidance, Control and Dynamics, 2006, 29 (6): 1350-1359.
  • 9Jiang Z P. Global tracking control of underactuated ships by Lyapunov's direct method[J]. Automatica, 2002, 38(2): 301-309.
  • 10Pettersen K Y. Global uniform asymptotic stabiliza -tion of an under actuated surface vessel[J]. IEEE Transactions On Control Systems Technology, 2004, 12(6) :891-903.

共引文献107

同被引文献25

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部