摘要
Carbon-fiber reinforced polymer composites have been widely used to achieve the light-weighted design and high performance due to superior performance. Internal defects in the composite materials are the main factors that determine their performance,which makes reliable and effective detection methods of internal defects essential. Nondestructive testing(NDT)methods are the most widely-used way due to their tremendous advantages. Though the theoretical background is found,experimental results could be quite complicated and confusing,especially for composite materials with complex defects characteristics. In this paper,experimental study on internal defects in composite materials based on the time of flight(ToF)are investigated. The Gaussian echo model and the parameter estimation methods are established to build a theoretical model for measurements. Then,the distance amplitude correction(DAC)method is proposed to effectively improve the signal-to-noise ratio(SNR)and to reduce distortion of the signal during measurements. Finally,the ToF is adopted to determine depth of internal defects. Experiment study is conducted to investigate the porosity defects and the anti-impact performance of composite materials,as well as defects in objects with various thicknesses. Experimental results show that the proposed method is quite helpful for obtaining the intuition and deep understanding of internal defects,thus contributing to the determination of product performance and its improvement.
碳纤维增强聚合物复合材料因其优越的性能而被广泛应用于轻量化和高性能设计。复合材料的内部缺陷是决定其性能的主要因素,可靠有效的内部缺陷检测方法对复合材料的应用至关重要。无损检测(Non-destructive testing,NDT)方法由于其巨大的优点而得到了广泛的应用。虽然理论方法较为成熟,但针对具有复杂缺陷特征的复合材料而言,详尽和深入的试验研究尚为数不多。本文基于飞行时间(Time of flight,To F)对复合材料内部缺陷的进行了试验研究。首先建立了高斯回波模型和参数估计方法,基于此建立了测量的理论模型。然后,引入距离幅度校正(Distance amplitude correction,DAC)方法,有效地提高了信噪比(Signal-to-noise ratio,SNR),降低了测量过程中的信号失真。再次,采用To F有效确定内部缺陷的深度。最后,将所提方法应用于复合材料的气孔缺陷和抗冲击性能的试验研究,以及不同厚度物体的气孔缺陷检测。相应的实验结果证明了所提方法的有效性。
作者简介
Corresponding author:ZHI Fan,E-mail address:493818231@qq.com.