期刊文献+

场富集有限元方法模拟多裂纹起裂、扩展和连接过程 被引量:5

Field-enriched finite element method for numerical simulation of initiation,propagation and coalescence of multiple cracks
在线阅读 下载PDF
导出
摘要 研究含多裂纹岩石的力学响应和裂纹行为对岩体结构的设计与稳定性分析具有重要的指导意义。提出了场富集有限元方法研究脆性岩石材料中多裂纹的演化规律,包括裂纹的起裂、扩展和连接过程。提出了多裂纹在扩展过程中出现的各种交汇情况的解决方案。场富集有限元方法可以直接处理复杂的交叉裂纹,而不需要像扩展有限元一样引入额外的富集函数。通过数值算例,充分说明了场富集有限元方法在处理各种复杂裂纹系统扩展演化方面的能力。 The study on the mechanical response and cracking behaviors of brittle rock materials with multiple cracks is of vital significance for the design and stability analysis of rock engineering structures.A field-enriched finite element method(FE-FEM)is proposed to study the evolution behaviors of multiple cracks in rock materials,including crack initiation,propagation and coalescence.The solutions to the crack coalescence problem during simulation are proposed.The field-enriched finite element method can directly deal with the complex multiple crack problem,while the extra enriched function needs to be introduced in the extended finite element method(XFEM).The analytical results of the present numerical examples demonstrate that the proposed numerical method has the capability to handle complex multiple crack propagation and coalescence.
作者 周小平 贾志明 ZHOU Xiao-ping;JIA Zhi-ming(School of Civil Engineering,Chongqing University,Chongqing 400045,China)
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2022年第6期988-996,I0003,共10页 Chinese Journal of Geotechnical Engineering
基金 国家自然科学基金项目(51839009)。
关键词 脆性岩石材料 场富集有限元方法 裂纹扩展和连接 复杂多裂纹 brittle rock material field-enriched finite element method crack propagation and coalescence multiple cracks
作者简介 周小平(1970-),男,博士,教授,博士生导师,主要从事岩石力学与工程方面的研究工作。E-mail:xiao_ping_zhou@126.com。
  • 相关文献

参考文献3

二级参考文献27

  • 1LEONEL E D,VENTURINI W S. Dual boundary element formulation applied to analysis of multi-fractured domains[J].{H}Engineering Analysis with Boundary Elements,2010,(12):1092-1099.
  • 2SINGH I V,MISHRA B K,PANT MOHIT. An enrichment based new criterion for the simulation of multiple interacting cracks using element free Galerkin method[J].{H}International Journal of Fracture,2011,(02):157-171.
  • 3BELYTSCHKO T,BLACK T. Elastic crack growth in finite elements with minimal remeshing[J].{H}International Journal for Numerical Methods in Engineering,1999,(05):601-620.
  • 4MO?S N,DOLBOW J,BELYTSCHKO T. A finite element for crack growth without remeshing[J].{H}International Journal for Numerical Methods in Engineering,1999,(01):131-150.
  • 5DAUX C,MO?S N,DOLBOW J. Arbitrary branched and intersecting cracks with the extended finite element method[J].{H}International Journal for Numerical Methods in Engineering,2000,(12):1741-1760.
  • 6BUDYN é,MO?S N,BELYTSCHKO T. A method for multiple crack growth in brittle materials without remeshing[J].{H}International Journal for Numerical Methods in Engineering,2004,(10):1741-1770.
  • 7FRIES T P. A corrected XFEM approximation without problems in blending elements[J].{H}International Journal for Numerical Methods in Engineering,2008,(05):503-532.
  • 8YU T T,LIU P. Improved implementation of the extended finite element method for stress analysis around cracks[J].Archives of Civil and Mechanical Engineering,2011,(03):787-805.
  • 9WRIGGERS P. Computational contact mechanics[M].{H}Chichester:John Wiley and Sons,2002.
  • 10LAURSEN T A. Computational contact and impact mechanics[M].{H}Berlin:Springer-Verlag,2002.

共引文献51

同被引文献45

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部