期刊文献+

基于POMDP的多机无源传感器协同任务规划 被引量:2

Mission Planning of Airborne Passive Sensors for Cooperative Target Tracking Based on POMDP
在线阅读 下载PDF
导出
摘要 针对多机无源传感器协同跟踪任务规划问题,提出了一种基于部分可观察马尔可夫决策过程(Partially Observable Markov Decision Process,POMDP)的多无人机无源传感器调度算法。在POMDP框架下建立了多无人机协同跟踪规划模型。考虑量测噪声方差距离相关特性,建立了广义克拉美-罗下界(Generalized Cramer-Rao Lower Bound,GCRLB)的目标跟踪长期代价指标。为满足在线规划的实时性,提出了一种基于分布式自主决策算法,仿真验证了所提算法的有效性。 An optimal path planning problem is investigated for cooperative target tracking using Unmanned Aerial Vehicle(UAV)equipped with passive sensors.The Partially Observable Markov Decision Process(POMDP)for multiple airborne passive sensors is established to improve the effectiveness of cooperative target tracking.Then,a Generalized Carmer-Rao Lower Bound(GCRLB)metric is designed to adapt to distance-dependent variance of TOA measurement noises and derive the long-time tracking costs.Further,the distributed decision algorithm is developed to solve the scheduling problem.At last,the effectiveness of the proposed algorithm is verified by simulation results.
作者 马玲 左燕 彭冬亮 任金磊 MA Ling;ZUO Yan;PENG Dongliang;REN Jinlei(School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China;China Academy of Launch Vehicle Technology,Beijing 100076,China)
出处 《无线电工程》 北大核心 2022年第7期1260-1265,共6页 Radio Engineering
基金 国家自然科学基金(61673146,61771028,61973102) 电子信息控制重点实验室基金(6142105200110)。
关键词 机载无源传感器 部分可观察马尔可夫决策 广义克拉美-罗下界 分布式决策 任务规划 airborne passive sensor Partially Observable Markov Decision Process(POMDP) Generalized Carmer-Rao Lower Bound(GCRLB) distributed decision mission planning
作者简介 马玲,女,(1996—),就读于杭州电子科技大学控制工程专业,硕士研究生。主要研究方向:传感器资源管理;通信作者:左燕,女,(1980—),博士,教授。主要研究方向:无源定位、目标跟踪和传感器资源管理;彭冬亮,男,(1977—),博士,教授,博士生导师。主要研究方向:目标跟踪、智能信息处理和信息融合;任金磊,男,(1989—),硕士,工程师。主要研究方向:弹道设计、导航制导控制和智能控制。
  • 相关文献

参考文献4

二级参考文献30

  • 1王俊,保铮,张守宏.无源探测与跟踪雷达系统技术及其发展[J].雷达科学与技术,2004,2(3):129-135. 被引量:62
  • 2Mahler R P S. Advances in Statistical Multisource- Multitarget Information Fusion. Norwood, MA: Artech House, 2014. 825-860.
  • 3Mahler R P S, Zajic T R. Probabilistic objective functions for sensor management. In: Proceedings of the 2004 Signal Processing, Sensor Fusion, and Target Recognition XIII. Or- lando, FL: SHE, 2004. 233-244.
  • 4Castafi6n D A, Carin L. Stochastic control theory for sen- sor management. Foundations and Applications of Sensor Management. US: Springer, 2008. 7-32.
  • 5Ristic B, Vo B T. Sensor control for multi-object state-space estimation using random finite sets. Automatiea, 2010, 46(11): 1812-1818.
  • 6Ristic B, Vo B N, Clark D. A note on the reward function for PHD filters with sensor control. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1521-1529.
  • 7Hoang H G, Vo B T. Sensor management for multi-target tracking via multi-Bernoulli filtering. Automatica, 2014, 50(4): 1135-1142.
  • 8Beard M, Vo B T, Vo B N, Arulampalam S. Sensor control for multi-target tracking using Cauehy-Schwarz divergence. In: Proceedings of the 18th International Conference on In- formation Fusion (Fusion). Washington, D.C.: IEEE, 2015. 937-944.
  • 9Hero A O, Kreucher C M, Blatt D. Information theoretic approaches to sensor management. Foundations and Appli- cations of Sensor Management. US: Springer, 2008. 33-57.
  • 10Vo B N, Ma W K. The Gaussian mixture probability hy- pothesis density filter. IEEE Transactions on Signal Pro- cessing, 2006, 54(11): 4091-4104.

共引文献37

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部