摘要
为提高工业机器人在焊接、喷涂等领域的工作效率和稳定性,工业机器人时间最优速度规划问题得到广泛研究,但受制于运动学、动力学模型的准确性及优化问题求解方法的效率,大多数方法很难在保证稳定性及不超速的前提下达到时间最优。文中采用指数积求解机器人运动学,考虑运动学及动力学约束对时间最优问题进行建模,最后基于凸优化问题相关理论进行求解。仿真结果表明,机器人能以相对稳定的速度达到时间最优,该方法可为工业机器人的实际应用提供理论依据。
To improve the working efficiency and stability of industrial robots in welding,spraying and other fields,the problem of time-optimal speed planning of industrial robots has been widely studied.However,subject to the accuracy of kinematics and dynamics models and the efficiency of optimization problem solving methods,most methods are difficult to achieve time optimization on the premise of ensuring stability.This paper uses the exponential product to solve the robot kinematics.The time optimization problem is modeled considering the kinematic and dynamic constraints.Finally,it is solved based on the theory of convex optimization problem.The simulation results show that the robot can achieve the time optimization at a relatively stable speed,and this method can provide a theoretical basis for the practical application of industrial robot.
作者
吴浩天
黄思
肖湘桂
杨建中
WU Haotian;HUANG Si;XIAO Xianggui;YANG Jianzhong(National NC System Engineering Research Center,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《机械工程师》
2022年第6期62-64,68,共4页
Mechanical Engineer
基金
广东省重大科技专项“智能机器人和装备制造”(2019B090919001)。
关键词
速度规划
时间最优
指数积
凸优化
speed planning
time-optimal
exponential product
convex optimization
作者简介
吴浩天(1997-),男,硕士,研究方向为机器人技术、工业机器人最优时间轨迹规划;通信作者:杨建中(1971-),男,博士,研究员,研究方向为CAD/CAM/CNC技术、数控系统智能化技术、云结构智能数控系统、数字化设计与制造。,yangjz@mail.hust.edu.cn。