期刊文献+

基于改进YOLOv4的变电站缺陷检测 被引量:7

Defect Detection for Substation Based on Improved YOLOv4
在线阅读 下载PDF
导出
摘要 为提高变电站设备缺陷的检测精度,保障变电站运行安全,提出一种基于改进YOLOv4的缺陷检测算法.不同于原始YOLOv4,该算法使用一维卷积替代全连接来优化CBAM卷积注意力模块,然后将其嵌入主干网络中以增强特征提取能力;同时,在特征融合中应用空洞卷积扩大感受野,聚合更广的语义信息.该算法在现场拍摄的样本集上进行测试, mAP可达到86.97%,相比原始YOLOv4提高了2.78%.实验结果表明,本文提出的YOLOv4改进算法能够提升网络性能,更好地应用于变电站设备缺陷检测任务. To increase the defect detection accuracy on substation equipment and thus ensure the operation safety of the substation, this study proposes a defect detection algorithm based on an improved YOLOv4. Unlike the original YOLOv4,the new algorithm replaces the fully connected layers with one-dimensional convolution to optimize the convolutional block attention module(CBAM), which is then embedded into the backbone network to enhance the feature extraction ability. Meanwhile, dilated convolution is used in feature fusion layers for expanding the receptive field and aggregating broader semantic information. The algorithm is tested on images captured in real substation scenes and achieves a mean average precision(mAP) of 86.97%, an increase of 2.78% on that of the original YOLOv4. Experimental results show that the proposed algorithm can improve the network performance and is thus more suitable for defect detection on substation equipment.
作者 陈婷 周旻 韩勤 张湘 茅耀斌 CHEN Ting;ZHOU Min;HAN Qin;ZHANG Xiang;MAO Yao-Bin(School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China;Zhejiang Huayun Information Technology Co.Ltd.,Hangzhou 310030,China)
出处 《计算机系统应用》 2022年第6期245-251,共7页 Computer Systems & Applications
关键词 YOLOv4 缺陷检测 CBAM注意力 空洞卷积 特征融合 卷积神经网络 YOLOv4 defect detection convolutional block attention module(CBAM)attention dilated convolution feature fusion convolutional neural networks(CNN)
作者简介 通信作者:茅耀斌,E-mail:myb_nust@126.com。
  • 相关文献

参考文献5

二级参考文献47

共引文献145

同被引文献68

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部