期刊文献+

基于特征分组和PSO的特征选择算法

Feature Selection Algorithm Based on Feature Grouping and PSO
在线阅读 下载PDF
导出
摘要 在高维小样本数据的特征选择中,样本的变化会导致最终选出的特征呈现不稳定的特点。针对这种情况,提出了一种新的特征选择算法。首先通过计算特征间的互信息以确定特征关联性的强弱,依据将特征间的关联性强弱将特征分为不同的组,待分组完成后,使用粒子群算法对特征进行选择,并对少部分粒子进行随机扰动,避免粒子陷入局部最优。选择完成后的特征进行集成,得到最终特征子集。结合5个公开数据集进行实验,该算法的特征维度平均降低77.5%。与现有的方法比较,得到的结果在稳定性方面平均提高了4.0%。 In the feature selection of high-dimensional data,the change of the sample will cause the final selected feature to exhibit unstable characteristics.In view of this situation,a new high-dimensional small sample feature selection algorithm is proposed.Firstly,the mutual information between the features is calculated to determine the strength of the feature relevance,and the features are divided into different groups according to the strength of the relevance between the features.A small number of particles are randomly perturbed to avoid particles falling into local optimum.The completed features are selected and integrated into the final feature subset.Combined with five open datasets,the feature dimension of this algorithn is reduced by 77.5%on average.Compared with the existing methods,the stability is improved by 4.0%on average.
作者 余肖生 江川 陈鹏 YU Xiaosheng;JIANG Chuan;CHEN Peng(College of Computer and Information,Three Gorges University,Yichang 443002)
出处 《计算机与数字工程》 2022年第5期1047-1052,共6页 Computer & Digital Engineering
基金 国家重点研究发展计划项目“城镇安全风险评估与应急保障技术研究”(编号:2016YFC0802500)资助。
关键词 特征选择 稳定性 PSO算法 特征分组 feature selection stability PSO algorithm feature grouping
作者简介 余肖生,男,博士,副教授,研究方向:健康医疗大数据分析;江川,男,硕士研究生,研究方向:大数据分析技术;陈鹏,男,博士,教授,研究方向:大数据分析技术。
  • 相关文献

参考文献4

二级参考文献39

  • 1李霞,张田文,郭政.一种基于递归分类树的集成特征基因选择方法[J].计算机学报,2004,27(5):675-682. 被引量:26
  • 2李颖新,刘全金,阮晓钢.一种肿瘤基因表达数据的知识提取方法[J].电子学报,2004,32(9):1479-1482. 被引量:13
  • 3邹涛,张翠,田新广,张尔扬.概念级误用检测系统的认知能力研究[J].电子学报,2004,32(10):1694-1697. 被引量:1
  • 4边肇祺.模式识别[M].北京:清华大学出版社,1987..
  • 5FAN J Q, LV J C. A selective overview of variable selection in high dimensional feature space[J]. Statistical Sinica, 2010 (10) : 101-148.
  • 6LIU H, YU L. Toward integrating feature selection algorithms for classification and clustering[J]. IEEE Transaction on Knowledge and Data Engineering, 2005, 17(3):1-12.
  • 7ZHAO Z. Spectral feature selection for mining ultrahigh dimensional data~. Arizona State University PhD Dissertation, 2010.
  • 8GUYON I, ELISSEEFF A. An introduction to variable and feature selection[J]. Journal of Machine Learning Research, 2003,3(3) : 1157-1182.
  • 9LI Y, LU B L. Feature selection based on loss margin of nearest neighbor classification [J]. Pattern Recognition, 2009,42:1914-1921.
  • 10TAKEUCHI I, SUGIYAMA M. Target neighbor consistent feature weighting for nearest neighbor classification [C]. Conference on Advances in Neural Information Processing Systems(NIPS), 2011 : 1-9.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部