摘要
                
                    目前电商数据存在维度多、实时性要求强等特点,很多传统的推荐算法并不能很好地适用于电商推荐。针对电商场景中需要同时考虑用户长期偏好和短期偏好,数据维度高导致推荐算法运行效率低,少数无关数据影响对用户真实意图的判断等问题,论文提出了一种基于GRU网络的会话型混合推荐算法。该混合推荐算法同时考虑了用户的长短期偏好,能够通过注意力机制推测用户真实意图,相比于其他循环神经网络推荐算法提高了运行效率,提高了推荐准确度。
                
                At present,e-commerce data has many characteristics,such as multi-dimensional,real-time requirements and so on.Many traditional recommendation algorithms are not suitable for e-commerce recommendation.In order to solve the problems of users'long-term and short-term preferences,low efficiency of recommendation algorithm due to high data dimension,and the influence of a few irrelevant data on users'real intention judgment,a hybrid recommendation algorithm based on GRU network is proposed.The hybrid recommendation algorithm takes into account the users'long-term and short-term preferences,infers users'real intentions through attention mechanism,and improves the efficiency and accuracy of recommendation compared with other recurrent neural network recommendation algorithms.
    
    
                作者
                    李镇宇
                    朱小龙
                    周从华
                    刘志锋
                LI Zhenyu;ZHU Xiaolong;ZHOU Conghua;LIU Zhifeng(School of Computer Science and Telecommunication Engineering,Jiangsu University,Zhenjiang 212013;Jingkou New Generation Information Technology Industry Research Institute,Jiangsu University,Zhenjiang 212013;不详)
     
    
    
                出处
                
                    《计算机与数字工程》
                        
                        
                    
                        2022年第5期942-947,共6页
                    
                
                    Computer & Digital Engineering
     
    
                关键词
                    电商推荐
                    门限循环单元
                    注意力机制
                    长短期状态
                
                        e-commence recommendation
                        gated recurrent unit
                        attention mechanism
                        long-term and short-term status
                
     
    
    
                作者简介
李镇宇,男,硕士,研究方向:推荐算法和大数据;朱小龙,男,硕士,副教授,研究方向:编码理论、软件系统构架和大型信息系统;周从华,男,博士,教授,研究方向:大数据技术、人工智能;刘志锋,男,博士,副教授,研究方向:模型检测、可信计算与物联网。