期刊文献+

Repaired morphology of CO_(2)laser rapid ablation mitigation of fused silica and its influence on downstream light modulation 被引量:1

原文传递
导出
摘要 The threat of cascading damage to downstream components caused by the light modulation intensification of laser repaired morphology on the surface of fused silica optics cannot be ignored in high-power laser systems.This paper uses the angular spectrum diffraction theory based on the analysis of repaired surface morphology of CO_(2)laser rapid ablation mitigation to study the influence of different repaired morphologies on the downstream 355 nm laser transmission.Studies show that the arc-shaped laser processing lines on the repaired surface are formed by the residual height superposition of the material after laser scanning of two adjacent layers,and the short-pulse laser can substantially suppress the heat-affected zone of the repaired area.The offaxis ring caustic and on-axis hotspot are sequentially generated in the downstream modulated light fields of the conical repaired sites with different diameters.A secondary peak with modulation larger than 3 emerges downstream of the modulation curve.Meanwhile,the maximum modulation and the secondary peak increase with the diameter and cone angle of the repaired site,and the position of the secondary peak appears farther away from the rear surface.The modulations of three repaired sites with cone angles of 15°,20°,and 25°can finally be stabilized below 3.Overall,the downstream optics should be installed far away from the positions where the maximum modulation and the secondary peak emerge.Additionally,the maximum value and the secondary peak of the downstream light modulation of double repaired sites are larger than that of the single repaired site,and both rise as the repaired sizes increase.Thus,large-scale and large-size repairing of multiple surface damages in the same area should be avoided in the laser repairing of fused silica.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第5期1116-1126,共11页 中国科学(技术科学英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.51775147 and 52175389) the Consolidation Program for Fundamental Research(Grant No.2019JCJQZDXX00) the Science Challenge Project(Grant No.TZ2016006-0503-01) the Young Elite Scientists Sponsorship Program by CAST(Grant No.2018QNRC001) the Natural Science Foundation of Heilongjiang Province(Grant No.YQ2021E021) the China Postdoctoral Science Foundation(Grant No.2018T110288) the Self-Planned Task of State Key Laboratory of Robotics and System(HIT)of China(Grant Nos.SKLRS201718A and SKLRS201803B) the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN201800623) the China Scholarship Council(Grant No.202006120158)。
作者简介 Corresponding author:CHEN MingJun,email:cheng.826@hit.edu.cn。
  • 相关文献

参考文献4

二级参考文献28

  • 1蒋勇.2012.博士学位论文 (成都: 电子科技大学).
  • 2Miller G H, Moses E I, Wuest C R 2004 Opt. Eng. 43 2841.
  • 3Andre M L 1997 Proc. SPIE 3047 38.
  • 4Peng H S, Zhang X M, Wei X F, Zheng W G, Jing F, Sui Z, Fan D Y, Lin Z Q 1999 Proc. SPIE 3492 25.
  • 5Bercegol H, Bouchut P, Lamaignere L, Le Garrec B, Raze G 2003 Proc. SPIE 5273 312.
  • 6Bass I L, Draggoo V G, Guss G M, Hackel R P, Norton M A 2006 Proc. SPIE 6261 A2612.
  • 7Campbell J H, Hawley-Fedder R A, Stolz C J, Menapace J A, Borden M R, Whitman P K, Yu J, Runkel M, Riley M O, Feit M D, Hackel R P 2004 Proc. SPIE 5341 84.
  • 8Hrubesh L W, Norton M A, Molander W A, Donohue E E, Maricle S M, Penetrante B M, Brusasco R M, Grundler W, Butler J A, Carr J W, Hill R M, Summers L J, Feit M D, Rubenchik A, Key M H, Wegner P J, Burnham A K, Hackel L A, Kozlowski M R 2002 Proc. SPIE 4679 23.
  • 9刘春明, 杨亮, 晏中华, 蒋勇, 王海军, 廖威, 向霞, 贺少勃, 吕海兵, 袁晓东, 郑万国, 祖小涛, 2013 .物理学报, 62 094701.
  • 10Adams J J, Bolourchi M, Bude J D, Guss G M, Matthews M J, Nostrand M C 2010 Proc. SPIE 7842 784223.

共引文献20

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部