摘要
基于q-阶正交区间模糊变量和Einstein集成算子的定义,提出了q-阶正交区间模糊Einstein集成算子的具体表达形式,并给出了q-阶正交区间模糊Einstein集成算子的运算规则、期望函数、精确函数以及比较大小的原则。介绍了几种q-阶正交区间模糊Einstein集成算子,如q-阶正交区间模糊Einstein加权算术平均算子、q-阶正交区间模糊Einstein加权几何平均算子、q-阶正交区间模糊Einstein有序加权算术平均算子等的概念,证明了算子具有幂等性、单调性、有界性等性质。同时,基于文中算子构建了两种不同的决策方法来研究属性权重为实数且属性值为q-阶正交区间模糊变量的决策问题。最后,结合示例说明所提方法的正确性和实用性。
Based on the q-rung orthopair interval fuzzy variables and the Einstein operator,the concept of q-rung orthopair interval fuzzy Einstein aggregation operator is introduced,then some basic definitions such as the operational laws,expected function,accuracy function and comparison rules of the q-rung orthopair interval fuzzy Einstein aggregation operator are given.Next,some q-rung orthopair interval fuzzy Einstein aggregation operators are developed,such as q-rung orthopair interval fuzzy Einstein weighted average operator,q-rung orthopair interval fuzzy Einstein weighted geometric operator,q-rung orthopair interval fuzzy Einstein ordered weighted average operator,etc.and some properties are proved such as idempotence,monotonicity and boundedness.At the same time,based on the operators in this paper,two different decision-making methods are constructed to study the decision problem with q-rung orthopair interval fuzzy variables.Finally,an example is illustrated to verify the correctness and practicability of the proposed approaches.
作者
杜玉琴
孙超
崔建新
DU Yuqin;SUN Chao;CUI Jianxin(School of Economics,University of Chinese Academy of Social Sciences,Beijing 102488,China;School of Data Science and Media Intelligence,Communication University of China,Beijing 100024,China;China Railway Investment Group Limited,Beijing 100039,China)
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2022年第1期17-26,共10页
Journal of Fudan University:Natural Science
基金
国家自然科学基金(71571019,71771025)
北京市社会科学基金(19YJB013)。
关键词
q-阶正交区间模糊变量
Einstein算子
多属性群决策
集成算子
q-rung orthopair interval fuzzy variables
Einstein operator
multiple attribute group decision making
aggregation operator
作者简介
杜玉琴(1976—),女,博士,副教授,E-mail:duyq1234567@163.com。