期刊文献+

q-阶正交区间模糊Einstein集成算子及其应用

q-rung Orthopair Interval Fuzzy Einstein Aggregation Operators and Their Application
在线阅读 下载PDF
导出
摘要 基于q-阶正交区间模糊变量和Einstein集成算子的定义,提出了q-阶正交区间模糊Einstein集成算子的具体表达形式,并给出了q-阶正交区间模糊Einstein集成算子的运算规则、期望函数、精确函数以及比较大小的原则。介绍了几种q-阶正交区间模糊Einstein集成算子,如q-阶正交区间模糊Einstein加权算术平均算子、q-阶正交区间模糊Einstein加权几何平均算子、q-阶正交区间模糊Einstein有序加权算术平均算子等的概念,证明了算子具有幂等性、单调性、有界性等性质。同时,基于文中算子构建了两种不同的决策方法来研究属性权重为实数且属性值为q-阶正交区间模糊变量的决策问题。最后,结合示例说明所提方法的正确性和实用性。 Based on the q-rung orthopair interval fuzzy variables and the Einstein operator,the concept of q-rung orthopair interval fuzzy Einstein aggregation operator is introduced,then some basic definitions such as the operational laws,expected function,accuracy function and comparison rules of the q-rung orthopair interval fuzzy Einstein aggregation operator are given.Next,some q-rung orthopair interval fuzzy Einstein aggregation operators are developed,such as q-rung orthopair interval fuzzy Einstein weighted average operator,q-rung orthopair interval fuzzy Einstein weighted geometric operator,q-rung orthopair interval fuzzy Einstein ordered weighted average operator,etc.and some properties are proved such as idempotence,monotonicity and boundedness.At the same time,based on the operators in this paper,two different decision-making methods are constructed to study the decision problem with q-rung orthopair interval fuzzy variables.Finally,an example is illustrated to verify the correctness and practicability of the proposed approaches.
作者 杜玉琴 孙超 崔建新 DU Yuqin;SUN Chao;CUI Jianxin(School of Economics,University of Chinese Academy of Social Sciences,Beijing 102488,China;School of Data Science and Media Intelligence,Communication University of China,Beijing 100024,China;China Railway Investment Group Limited,Beijing 100039,China)
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2022年第1期17-26,共10页 Journal of Fudan University:Natural Science
基金 国家自然科学基金(71571019,71771025) 北京市社会科学基金(19YJB013)。
关键词 q-阶正交区间模糊变量 Einstein算子 多属性群决策 集成算子 q-rung orthopair interval fuzzy variables Einstein operator multiple attribute group decision making aggregation operator
作者简介 杜玉琴(1976—),女,博士,副教授,E-mail:duyq1234567@163.com。
  • 相关文献

参考文献3

二级参考文献19

  • 1Bustince H,Burillo P.Vague sets are intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,1996,79(3):403-405.
  • 2Atanassov K,Gargov G.Interval-valued intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,1989,31(3):343-349.
  • 3Atanassov K.Operators over interval-valued intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,1994,64(2):159-174.
  • 4Mondal T K,Samanta S K.Topology of interval-valued intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,2001,119(3):483-494.
  • 5Deschrijver G,Kerre E E.On the relationship between some extensions of fuzzy set theory[J].Fuzzy Sets and Systems,2003,133 (2):227- 235.
  • 6Chen S J,Hwang C L.Fuzzy multiple attribute decision making:methods and applications[M].New York:Springer,1992.
  • 7Zadeh L A.Fuzzy sets[J].Inform.and Control,1965,8(3):338-356.
  • 8Atanassov K.Intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,1986,20(1):87-96.
  • 9Hong D H,Choi C H.Multicriteria fuzzy decision-making problems based on vague set theory[J].Fuzzy Sets and Systems,2000,114(1):103-113.
  • 10Atanassov K.Intuitionistic fuzzy sets:theory and applications[M].Heidelberg:Physica-Verlag,1999.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部