摘要
研究了Chern-Simons Landau-Lifshitz模型自对偶方程静态解的存在性问题.首先,利用数学分析理论和分离变量法得到了自对偶方程的静态解.其次,证明了当向量场满足A_(0)=ϕ_(3)-τ时自对偶方程的静态解满足Chern-Simons Landau-Lifshitz方程.最后,利用共变导数和向量运算法则证明了Chern-Simons Landau-Lifshitz模型具有能量守恒和规范不变的性质.
This paper considered the existence of static solutions to the self-dual case of the Chern-Simons Landau-Lifshitz model.First,the static solutions of the self-dual equations are obtained using the mathematical analysis technique and the separation variable method.Secondly,it is shown that the static solution of the self-dual equation also satisfies the Chern-Simons Landau-Lifshitz equation when the vector field is satisfied A_(0)=ϕ_(3)-τ.Finally,we use the covariant derivative and the vector operation rules to show that the Chern-Simons Landau-Lifshitz model has both energy-conservation and gauge-invariant properties.
作者
陈智慧
金广辉
CHEN Zhihui;JIN Guanghui(College of Science,Yanbian University,Yanji 133002,China)
出处
《延边大学学报(自然科学版)》
CAS
2022年第1期6-12,共7页
Journal of Yanbian University(Natural Science Edition)
基金
吉林省教育厅科学技术研究项目(JJKH20210564KJ)。
作者简介
第一作者:陈智慧(1997—),女,硕士研究生,研究方向为偏微分方程;通信作者:金广辉(1987—),男,博士,讲师,研究方向为偏微分方程。