摘要
针对某型多载具自动化存取系统优化分配问题,分析该自动化存取系统的运行特点,建立了该自动化存取系统优化问题的马尔科夫决策过程模型,并提出了求解模型的基于改进蒙特卡罗树搜索算法。首先,以总搬运量和同类型货箱距离最小为目标建立货位优化模型,为了更好控制蒙特卡罗树搜索分支合理性,对算法节点选择部分进行优化。最后,对改进的蒙特卡罗树搜索算法进行货位优化及对比测试。实验结果表明:改进的蒙特卡罗树搜索算法较采用贪心思想、采用魔方还原思想以及基于传统蒙特卡罗树搜索的算法在货位优化运行效果上更优。
To optimize the distribution of the multi vehicle automatic access system storage space, the operation characteristics of a multi vehicle automatic access system are analyzed, the Markov decision process model of the multi vehicle automatic access system optimization problem is established, and an improved Monte Carlo tree search algorithm is proposed to solve the model. Firstly, the cargo location optimization model is established aiming at the minimum total handling capacity and the distance between the same type of containers. Then, in order to better control the rationality of Monte Carlo tree search branch, the node selection part of the algorithm is optimized. Finally, the improved Monte Carlo tree search algorithm is optimized and tested. The experimental results show that the improved Monte Carlo tree search algorithm is better than the greedy algorithm, the cube reduction algorithm and the traditional Monte Carlo tree search algorithm.
作者
陈俭新
宁蒙
黄予洛
张蕾
赵新灿
CHEN Jian-xin;NING Meng;HUANG Yu-luo;Zhang Lei;ZHAO Xin-can(The 713 Research Institute of CSSC,Zhengzhou 450015,China;School of Information Engineering,Zhengzhou University,Zhengzhou 450001,China)
出处
《舰船科学技术》
北大核心
2022年第8期169-173,共5页
Ship Science and Technology
基金
航空科学基金资助项目(2018ZC41002)。
作者简介
陈俭新(1990-),男,硕士,工程师,研究方向为强化学习、船用特种物资调度。