期刊文献+

基于混沌收敛因子和惯性权重的鲸鱼优化算法 被引量:5

Whale optimization algorithm based on chaotic convergence factor and inertia weight
在线阅读 下载PDF
导出
摘要 针对标准鲸鱼优化算法收敛速度慢、易陷入局部最优等问题,提出一种基于混沌收敛因子和惯性权重的改进鲸鱼优化算法(CWOA)。首先采用均匀化与随机化相结合的方式获取初始种群,以提高种群的多样性进而有效提升算法的收敛速度;然后利用混沌收敛因子和惯性权重非线性协同更新策略来平衡算法的全局探索和局部开发能力;最后对寻优过程中的每代最优个体进行多项式变异,提高跳出局部最优的概率。通过12个标准测试函数来检验改进策略的有效性和算法的寻优性能,通过机械臂末端位置优化问题来检验算法的实际应用效果,并与其他几种群智能优化算法进行了对比。结果表明,CWOA在寻优精度、收敛速度和鲁棒性方面均有明显优势。 An improved whale optimization algorithm based on chaotic convergence factor and inertia weight(CWOA)was proposed to solve the problem that the classical whale optimization algorithm has low convergence speed and is easy to fall into local optimum.At first,the initial population was obtained by a method combining homogenization with randomization in order to improve the population diversity and the convergence speed of the algorithm.Then a nonlinear collaborative updating strategy of chaotic convergence factor and inertia weight was used to balance the global exploration and the local exploitation.Finally,polynomial mutation was performed on the optimal individual in each generation to increase the probability of jumping out of local optimum.The effectiveness of the improvement strategies and the performance of the algorithm were tested via 12 benchmark functions,and the practical application effect was verified by the optimization problem of a robotic arm’s end position.The results show that,compared with several other swarm intelligence algorithms,CWOA has obvious advantages in optimization precision,convergence speed and robustness.
作者 邹浩 李维刚 李阳 赵云涛 Zou Hao;Li Weigang;Li Yang;Zhao Yuntao(Engineering Research Center for Metallurgical Automation and Detecting Technology of Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《武汉科技大学学报》 CAS 北大核心 2022年第4期304-313,共10页 Journal of Wuhan University of Science and Technology
基金 国家重点研发计划项目(2019YFB1310000) 湖北省揭榜制科技项目(2020BED003) 湖北省重点研发计划项目(2020BAB098).
关键词 鲸鱼优化算法 混沌收敛因子 惯性权重 多项式变异 种群多样性 whale optimization algorithm chaotic convergence factor inertia weight polynomial mutation population diversity
作者简介 邹浩(1993-),男,武汉科技大学硕士生.E-mail:294665471@qq.com;通讯作者:李维刚(1977-),男,武汉科技大学教授,博士生导师.E-mail:liweigang.luck@foxmail.com。
  • 相关文献

参考文献5

二级参考文献37

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[ A]. Proc of the 1EEE International Conference on Neural Networks[ C]. Piscataway: IEEE Press, 1995.1942 - 1948.
  • 2Coello Coello C A, Pulido G T, Lechuga M S. Hand/ing multiple objectives with particles swarm onizafiorl[J]. q]-ansactions on Evolutionary Con--lmtation,2004,8(3):256- 279.
  • 3Sierra M R, Coello Coello C A. Improving PSO-based multi- objective optimization using crowding, mutation and e-domi- nance [ A ]. Proceedings of 3rd International Conference on Evolutionary Multi-cn'terion Optimization [ C ]. Berlin: Springer, 2005.505 - 519.
  • 4Yen GG, Leong WF. Dynamic multiple swarms in multiobjec- five particle swarm optimization [ J ]. mEE Transacations on System, Man, Cybernetics,Part A,2009,39(4) :890- 911.
  • 5Xuewen Xia, Jingnan Liu, Zhongbo Hu. An improved particle swarm optimizer based on tabu detecting and local learning strategy in a shrunk search space[ J]. Applied Soft Computing, 2014,23: 76 - 90.
  • 6Ziflzer E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm[ A]. Proceedings of In- ternational Conference on Evolutionary Method for Design, Optimization and Control with Applications to Industrial Prob- lems[ C ]. Berlin: Springer, 21302.95 - 100.
  • 7Deb K,Pratab A,Agarwal S,et al.A fast and elitist multi-ob- jective genetic algorithm: NSGA-I/[ J]. IEEE Transactions on Evolutionary Cornputation, 2002,6(2) : 182 - 197.
  • 8Qingfu Zhang,Hui Li. MOEA/D: A multi-objective evolution- ary algorithm based on decomposition[ J]. 1EEE Transactions on Evolutionary Computation, 2007,11 (6) : 712 - 731.
  • 9Zitler E, Deb K, Thiele L. Comparison of multi-objective evo- lutionary algorithms: Empirical results[ J]. Evolutionary Compu- tation,2000,8:173 - 195.
  • 10Deb K, Thiele L, Laumanns M, Zitzler E. Scalable multi-ob- jective optimization test problems [ A ]. Proc of the IEEE Congress on Evolutionary Computation ( CEC 2002) [ C ]. Pis- cataway: IEEE Service Center,2002. 825 - 830.

共引文献272

同被引文献45

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部