摘要
针对有限区间哈默斯坦(Hammerstein)非线性时变系统,该文提出一种加权迭代学习算法用以估计系统时变参数。首先将Hammerstein系统输入非线性部分进行多项式展开,采用迭代学习最小二乘算法辨识系统的时变参数。为了防止数据饱和,采用带遗忘因子的迭代学习最小二乘算法,进而引入权矩阵,采用加权迭代学习最小二乘算法改进系统跟踪误差,以提高辨识精度。该文分别给出3种算法的推导过程并进行仿真验证。结果表明,与迭代学习最小二乘算法和带遗忘因子迭代学习最小二乘算法相比,加权迭代学习最小二乘算法具有辨识精度高、跟踪误差小以及迭代次数少等优点。
For Hammerstein nonlinear time-varying systems running repeatedly on finite intervals,a weighted iterative learning algorithm is proposed to estimate the time-varying parameters involved in the system dynamics.The nonlinear input part of the Hammerstein system is tackled based on polynomial expansion,and the iterative learning least square algorithm is given for the time-varying parameter identification.In order to prevent data saturation,an iterative learning least squares algorithm with forgetting factor is proposed for reducing the system tracking error and improving the identification accuracy;A weighted iterative learning least squares algorithm is further presented by introducing the weight matrix.The derivations of the three algorithms are given in detail.The simulation results demonstrate the effectiveness of the proposed learning algorithms,and in comparison with iterative learning least squares algorithm,the modified one sreach high identification accuracy and need fewer iterations.
作者
仲国民
俞其乐
陈强
ZHONG Guomin;YU Qile;CHEN Qiang(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2022年第5期1610-1616,共7页
Journal of Electronics & Information Technology
基金
国家自然科学基金(62073291,62973274)。
关键词
加权迭代学习辨识
时变参数
哈默斯坦模型
最小二乘算法
Weighted iterative learning identification
Time-varying parameters
Hammerstein Model
Least squares algorithm
作者简介
通信作者:仲国民:男,1983年生,博士生,研究方向为系统辨识与学习控制.zgm@zjut.edu.cn;俞其乐:男,1997年生,硕士生,研究方向为学习辨识;陈强:男,1984年生,副教授,硕士生导师,主要研究方向为自适应与学习控制.