期刊文献+

利用SVM-LSTM-DBN的短期光伏发电预测方法 被引量:7

Short-Term Photovoltaic Power Forecasting Method Based on SVM-LSTM-DBN
在线阅读 下载PDF
导出
摘要 为解决传统预测算法的不足,利用深度信念网络(DBN)耦合支持向量机(SVM)和长短期记忆神经网络(LSTM),提出一种新的光伏功率组合预测方法.分别构建以高斯径向基函数为核函数的支持向量机预测模型、4层长短期记忆神经网络为单项预测模型,通过深度信念网络组合,优化预测结果并输出.根据实际出力和预测结果的误差,利用DBN动态调整以获得最优值,进一步验证SVM-LSTM-DBN模型的有效性和准确性,并以新疆维吾尔自治区某光伏电站的实测数据进行仿真验证.结果表明:基于SVM-LSTM-DBN组合的光伏出力预测模型与单一模型相比,预测精度明显提高. In order to solve the shortcomings of traditional forecasting algorithms,a new combination prediction method of photovoltaic power is proposed by using deep belief network(DBN) coupled support vector machine(SVM) and long short-term memory neural network(LSTM).The support vector machine prediction model with the kernel function of Gaussian radial basis function and the 4-layer long-short-term memory neural network as a single prediction model.Through the combination of deep belief networks,the prediction results are optimized and output.According to the actual output and the error of the prediction results,the DBN is used for dynamic adjustment to obtain optimal value,to further verify the validity and accuracy of the SVMLSTM-DBN model.To take simulate and verify the actual measurement data of a photovoltaic power station in Xinjiang Uygur Autonomous Region.The results show that:compare the photovoltaic output prediction model based on the combination of SVM-LSTM-DBN and a single model,the prediction accuracy is significantly improved.
作者 卿会 郭军红 李薇 亢朋朋 王金明 潘张榕 QING Hui;GUO Junhong;LI Wei;KANG Pengpeng;WANG Jinming;PAN Zhangrong(College of Environmental Science and Engineering,North China Electric Power University,Beijing 102206,China;Key Laboratory of Resources and Environment System Optimization of Ministry of Education,North China Electric Power University,Beijing 102206,China;State Grid Xinjiang Electric Power Company Limited,Urumqi 830002,China;Altay Power Supply Company,State Grid Xinjiang Electric Power Company Limited,Altay 836500,China)
出处 《华侨大学学报(自然科学版)》 CAS 2022年第3期371-378,共8页 Journal of Huaqiao University(Natural Science)
基金 国家重点研发计划项目-战略性国际科技创新合作重点专项(2018YFE0208400)。
关键词 光伏发电 光伏出力预测模型 支持向量机 长短期记忆神经网络 深度信念网络 photovoltaic power generation photovoltaic output prediction model support vector machine long and short-term memory neural network deep belief network
作者简介 通信作者:李薇(1974-),女,教授,博士,博士生导师,主要从事能源环境污染控制、环境影响评价、环境规划与管理、节能减排优化、能源与环境系统分析等研究.E-mail:925657837@qq.com.
  • 相关文献

参考文献9

二级参考文献79

  • 1茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列Matlab通用仿真模型[J].系统仿真学报,2005,17(5):1248-1251. 被引量:428
  • 2苏连成,朱枫.一种新的全向立体视觉系统的设计[J].自动化学报,2006,32(1):67-72. 被引量:23
  • 3栗然,刘宇,黎静华,顾雪平,牛东晓,刘永奇.基于改进决策树算法的日特征负荷预测研究[J].中国电机工程学报,2005,25(23):36-41. 被引量:30
  • 4刘玲,严登俊,龚灯才,张红梅,李大鹏.基于粒子群模糊神经网络的短期电力负荷预测[J].电力系统及其自动化学报,2006,18(3):47-50. 被引量:27
  • 5张素宁,田胜元.太阳辐射逐时模型的建立[J].太阳能学报,1997,18(3):273-277. 被引量:56
  • 6ENRIQUE Romero-Cadaval, MARIA Isabel Milan6s-Monte- to, EVA Gonztlez-Romera, et al. Power injection system for grid-connected photovoltaic generation systems based on two collaborative voltage source inverters [ J ]. Industrial Electron- ics,lEEE Transactions on,2009,56( 11 ) :4 389-4 398.
  • 7ZENG Jianwu, QIAO Wei. Short-term solar power prediction using a support vector nachine [ J ]. Renewable Energy, 2013,52( 1 ) :118-127.
  • 8LORENZ Elke, HURKA Johannes, HINEMANN Deflev, et al. Irradiance forecasting for the power prediction of grid-con- nected photovoltaic systems [ J ]. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 2009,2( 1 ) :2-10.
  • 9IZGI Ercan, ZTOPAL Ahmet, YERLI Bihter, et al. Short- mid-term solar power prediction by using artificial neural net- works [J]. Solar Energy,2012,86(2) :725-733.
  • 10BACHER Peder, MADSEN Henrik, NIELSEN Henrik Aal- borg. Online short-term solar power forecasting [ J ]. Solar Energy ,2009,83 ( 10 ) : 1 772-1 783.

共引文献420

同被引文献70

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部