期刊文献+

基于YOLOv4的海上目标识别技术研究 被引量:3

Research on marine target recognition technology based on YOLOv4
在线阅读 下载PDF
导出
摘要 为实现复杂海况下对水柱和靶球目标的高效检测,提出了以YOLOv4网络模型为基础的改进算法。实验设计了4种方案对模型检测效果进行改进:用K-means聚类算法对锚定框进行优化;在YOLOv4骨干网络中嵌入SE注意力模块提高对小目标的检测能力;使用基于灰度共生矩阵的海天线检测算法限定检测范围;采用结构相似性检测算法改善视频流检测效果。检测实验证明4种方法对提高网络检测性能均有效果,综合使用4种方法对YOLOv4网络进行改进,在检靶数据集上mAP_(50)值提升了29.9%。 In complex sea conditions,in order to achieve efficient detection of water-columns and target-balls,the article proposed an improved YOLOv4 network model to detect marine targets.The experiment designed 4 schemes:It used the K-means clustering algorithm to optimize the anchor frame,and embed the SE attention module in the YOLOv4 backbone network to improve the network’s ability to detect small targets,and it used the horizon detection algorithm based on gray level co-occurrence matrix to limit the scope of target detection and used the structural similarity detection algorithm to improve the video stream detection effect.Experiments have proved that the four schemes are effective in improving the performance of network detection.We used the four schemes to improve the YOLOv4 network,and the mAP_(50) value on the target detection data set was increased by 29.9%.
作者 张坤 罗亚松 刘忠 ZHANG Kun;LUO Yasong;LIU Zhong(College of Weapons Engineering, Naval University of Engineering, Wuhan 430033, China)
出处 《兵器装备工程学报》 CSCD 北大核心 2022年第4期211-217,共7页 Journal of Ordnance Equipment Engineering
关键词 目标识别 YOLOv4 K-MEANS SE注意力 GLCM SSIM target recognition YOLOv4 K-means SE attention GLCM SSIM
作者简介 张坤(1993—),男,助理工程师,E-mail:724072076@qq.com;通信作者:罗亚松(1982—),男,博士,副教授,E-mail:yours_baggio@sina.com。
  • 相关文献

参考文献6

二级参考文献31

  • 1张令文,谈振辉.基于泰勒级数展开的蜂窝TDOA定位新算法[J].通信学报,2007,28(6):7-11. 被引量:39
  • 2张川,陈云翔,林晓东.基于声波与地震波到达时差的传感器炸点定位研究[J].探测与控制学报,2007,29(4):31-34. 被引量:5
  • 3R. M. Haralick, K. Shanmugam, I. Dinstein. Texture features for image classification [ J ]. IEEE Trans. Syst. Man Cybern, 1973,3:610 - 621.
  • 4F. Crow. Summed-area tables for texture mapping[ J ]. Computer Graphics, Techniques ( SIGRAPH' 84 ). 1984,18 ( 3 ) :207 - 212.
  • 5P. Viola, M. Jones. Robust real-time face detection [ J ]. International Joural of Computer Vision,2004,57 ( 2 ) : 137 - 154.
  • 6P. Viola, M. Jones, D. Snow. Detection pedestrians using patterns of motion and appearance [ C ]. Proceedings of Internation Conference on Computer Vision, 2003,734 - 771.
  • 7M. Hussein, F. Porikli,L. Davis. Kernel integral images:a frame work for fast non-uniform filtering[ C ]. Proceedings of Internation Conference of Computer Vision and Pattern Recognition ,2008.
  • 8Y. Ke,R. Sukthanka,M. Hebert. Efficient visual event detection using volumetric features [ C ]. Proceedings of IEEE International Conference on Computer Vision,2005 : 166 - 173.
  • 9K. G. Derpanis,E. T. H. Leung, M. Sizintze. Fast scale-space feature representations by generalized integral images[ R]. Technical report, York University.
  • 10姜景连.一类矩阵代数上保持交换性的导子[J].吉林师范大学学报(自然科学版),2013,34(3):86-87. 被引量:2

共引文献49

同被引文献38

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部