期刊文献+

基于显示性偏好数据的航运承运人应对全球限硫令的选择偏好研究 被引量:1

A study on shipowners’selection preferences in response to global sulfur restrictions based on revealed preference data
原文传递
导出
摘要 建立了一个基于显示性偏好数据的航运承运人减排方案决策建模框架,从实证角度研究了承运人的实际减硫方案选择机制;基于AIS数据和其他相关数据库,采用数据挖掘方法与计量经济模型,综合考虑船舶特征、承运人特征和外部市场情况等方面共11个因素,克服了已有文献关注经济因素、忽视非经济因素的局限,系统分析了限硫令下承运人的应对措施选择。研究结果表明:11个因素均有助于解释承运人的能源选择,但其影响程度各不相同;各因素的修正效应量排序依次为距离新规实行的年限(3.957)、载重吨位(2.270)、船龄(1.711)、公司规模(1.579)、每吨燃料价差(1.456)、运价指数(1.442)、环保意识指数(1.353)、航速(1.243)、航程(1.172)、排放控制区航行占比(1.127)、贸易路线固定程度(1.108);对于承运人的能源方案选择,距离新规实行的年限和载重吨位对承运人决策产生了非常重要的影响,修正效应量均大于2.0;船龄、公司规模、每吨燃料价差、运价指数和环保意识指数5个因素对于决策的影响程度适中,修正效应量为1.3~1.8;其余4个与承运人运营模式相关因素虽然对于决策有一定影响,但影响程度较小,其修正效应量均小于1.3。 A decision-making modeling framework for the shipowners’emissions reduction plan based on the revealed preference(RP)data was established,and the selection mechanism for the shipowners’practically feasible plan for reducing the sulfur emissions was empirically investigated.Based on the AIS data and the data from other related databases,11 factors from ship particulars,shipowner characteristics,and external market conditions were comprehensively considered.The limitations of existing literatures focusing on economic factors and ignoring non-economic factors were overcome,and the shipowners’selection of countermeasures under sulfur restrictions was systematically analyzed.Analysis results show that the 11 factors considered in this study,which exhibit varying degrees of effects,contribute to the interpretation of the shipowners’energy selection.In terms of the modified effect sizes,the factors are sequentially presented:the time period away from the implementation of the global sulfur restrictions(3.957),the deadweight tonnage(2.270),the ship age(1.711),the company size(1.579),the price difference per ton of the fuel(1.456),the freight rate index(1.442),the environmental awareness index(1.353),the speed of the ship(1.243),the voyage length(1.172),the proportion of sailing distance in the emission control area(1.127),and the trading route diversity(1.108).With regards to the shipowners’selection of an energy plan,the time period away from the implementation of the global sulfur restrictions and the deadweight tonnage significantly affect their decisions,and the modified effect sizes are more than 2.0.The five factors(i.e.,the ship age,the company size,the price difference per ton of the fuel,the freight rate index,and the environmental awareness index)moderately affect their decisions,and the modified effect sizes are within 1.3-1.8.The other four factors related to the shipowners’operation patterns marginally affect their decisions,and the modified effect sizes are less than 1.3.3 tabs,30 refs.
作者 白茜文 侯尧 杨冬 BAI Xi-wen;HOU Yao;YANG Dong(Department of Industrial Engineering,Tsinghua University,Beijing 100084,China;Faculty of Business,The Hong Kong Polytechnic University,Hong Kong 999077,China)
出处 《交通运输工程学报》 EI CSCD 北大核心 2022年第1期240-249,共10页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(72001123,71971185) 广东省基础与应用基础研究基金项目(2021A1515010699)。
关键词 水路运输经济 IMO排放监管 离散选择模型 能源选择 AIS数据 船舶行为 economics of waterway transportation IMO emission regulation discrete selection model energy choice AIS data ship behavior
作者简介 白茜文(1991-),女,山东济南人,清华大学助理教授,工学博士,从事航运经济与航运大数据研究;通讯作者:杨冬(1980-),男,贵州贵阳人,中国,香港理工大学助理教授,工学博士。
  • 相关文献

参考文献4

二级参考文献45

  • 1张学敏,葛蕴珊,张昱,张豫南,韩秀坤,高力平.利用碳平衡法进行汽车油耗测量的应用研究[J].车用发动机,2005(3):56-58. 被引量:16
  • 2Xiaobo Qu,Qiang Meng,Li Suyi.Ship collision risk assessment for the Singapore Strait[J]. Accident Analysis and Prevention . 2011 (6)
  • 3Gunnar Aars?ther, Karl,Moan, Torgeir.??Estimating Navigation Patterns from AIS(J)The Journal of Navigation . 2009 (4)
  • 4Neil Johnson,David Hogg.??Learning the distribution of object trajectories for event recognition(J)Image and Vision Computing . 1996 (8)
  • 5Manabe S,Hatanaka T,Uosaki K et al.Training hidden Markovmodel structure with genetic algorithm for human motion patternclassification. SICE-ICASE International Joint Conference . 2006
  • 6Gerben Klaas Dirk de Vries,Maarten van Someren.??An analysis of alignment and integral based kernels for machine learning from vessel trajectories(J)Expert Systems With Applications . 2014
  • 7ETIENNE L,DEVOGELE T.Similarity analysis of mobile objects trajectories following the same itinerary. Ingenierie Des Systemes D’’information . 2009
  • 8LAXHAMMAR R,FALKMAN G,SVIESTINS E.Anomaly detection in sea traffic-a comparision of the Gaussian mixture model and the kernel density esimator. 12th International Conference on Informaiton Fusion . 2009
  • 9S. Atev,,O. Masoud,,N. Papanikolopoulos.Learning traffic patterns at intersections by spectral clustering of motion trajectories. IEEE International Conference on Intelligent Robots and Systems . 2006
  • 10DAHLBOM A,NIKLASSON L.Trajectory Clustering for Coastal Surveillance. IEEE 10th International Conference on Information Fusion . 2007

共引文献47

同被引文献44

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部