摘要
Lithium metal is deemed as an ideal anode material in lithium-ion batteries because of its ultrahigh theoretical specific capacity and the lowest redox potential.However,the rapid capacity attenuation and inferior security resulting from the dendritic lithium growth severely limit its commercialization.Herein a novel hybrid gel polymer electrolyte (GPE) based on electrospun lithium sulfonated polyoxadiazole (LiSPOD) nanofibrous membrane swelled by lithium bis(trifluoromethanesulfonyl)imide (Li TFSI) ether liquid electrolyte is proposed to address the issue of lithium dendrites.The Li-SPOD membrane synthesized by a simple one-pot method exhibits excellent mechanical strength and thermal resistance due to its high molecular weight and rigid backbone.The electron-withdrawing oxadiazole ring and oxadiazole ring-Li;complex,and N,O heteroatoms with lone pairs of electrons in Li-SPOD macromolecular chains facilitate the dissociation of-SO_(3)Li group and Li^(+)transference.The hybrid Li-SPOD GPE exhibits both a high lithium-ion transference number (0.64) and high ionic conductivity (2.03 m S/cm) as well as superior interfacial compacity with lithium anodes.The Li Fe PO_(4)-Li cell using this novel GPE can operate steadily at 2C for 300 cycles,remaining a high discharge capacity of 125 m Ah/g and dendrite-free anode.Remarkable performance improvements for the Li-Li and Cu-Li cells are also presented.
基金
supported by the Fundamental Research Funds for Central Universities of China and the Key Research and Development Projects of Sichuan (No.2020YFG0127)。
作者简介
Corresponting author:Mengjin Jiang.E-mail address:memoggy@126.com。