期刊文献+

基于IMU的细粒度奶牛行为判别 被引量:5

Fine-grained cows’ behavior classification method based on IMU
原文传递
导出
摘要 针对奶牛行为判别自动化水平不足、准确率低的问题,采用惯性测量单元(IMU)和卷积神经网络(CNN),对细粒度奶牛行为判别进行研究。结果表明:1)在KNN、SVM、BPNN、CNN和LSTM 5个模型中,CNN模型在奶牛行为分类测试集上的准确率最高。2)含有三轴加速度计、陀螺仪和磁力计的IMU更加适用于奶牛行为分类,其分类效果优于含一种传感器的IMU。3)传感器频率与分类模型的性能相关,频率越高,正确率越高,当传感器频率设置为25Hz时,奶牛行为判别效果最好。4)在1、2和4s这3种时间窗中,使用4s时间窗的奶牛行为分类模型性能最好。5)采用最优配置时,卷积神经网络模型能够有效的判别奶牛站立、躺卧2种状态,正确率为99%;可以对奶牛卷食、咀嚼、站立反刍、躺卧反刍、躺卧休息、站立休息6类行为进行判别,正确率为85%。采用IMU和卷积神经网络算法,可以有效的对细粒度奶牛行为进行判别,为奶牛养殖的自动化、智能化管理提供支撑。 In order to realize the automatic recognition of dairy cows’ behaviors,an fine-grained cow behavior classification method based on inertial measurement unit(IMU)and convolutional neural network(CNN)was proposed.The results showed that:1)Among the five classification models of KNN,SVM,BPNN,CNN and LSTM,the CNN model has the highest accuracy on the cow behavior classification test set.2)The IMU with triaxial accelerometer,gyroscope and magnetometer is more suitable for cow behavior classification,and its classification effect of cow behavior is better than IMU with a single type of sensor.3)Sampling frequency was related to the performance of classification models.The higher the frequency,the higher the accuracy.When the sampling frequency was set to 25 Hz,the performance of classification model was the best.4)Among the three time windows of 1,2 and 4s,the performance of behavior classification model of cows with the time window of 4 sis the best.5)When the optimal configuration was adopted,the CNN model can effectively distinguish the standing and lying states of dairy cows with a correct rate of 99.08%;The six behaviors of cows’ feeding,chewing,standing ruminating,lying ruminating,lying resting,standing resting can be identified,and the accuracy is 85.19%.In conclusion,the proposed method can be used to distinguish the finegrained behaviors of dairy cows effectively and support the automatic and intelligent management of dairy farming.
作者 程国栋 吴建寨 邢丽玮 朱孟帅 张建华 韩书庆 CHENG Guodong;WU Jianzhai;XING Liwei;ZHU Mengshuai;ZHANG Jianhua;HAN Shuqing(Agricultural Information Institute/Key Laboratory of Agricultural Big Data of Ministry of Agriculture and Rural Affairs,Chinese Academy of Agricultural Sciences,Beijing 100081,China)
出处 《中国农业大学学报》 CAS CSCD 北大核心 2022年第4期179-186,共8页 Journal of China Agricultural University
基金 国家自然科学基金项目(32102600) 国家重点研发计划项目(2017YFD0502006) 中国农业科学院科技创新工程(CAAS-ASTIP-2016-AII) 中央级公益性科研院所基本科研业务费专项(JBYW-AII-2020-42,JBYW-AII-2021-33)。
关键词 奶牛 行为判别 卷积神经网络 IMU cow behavior identification convolutional neural networks IMU
作者简介 第一作者:程国栋,助理研究员,主要从事畜禽行为识别和畜牧物联网技术研究,E-mail:chengguodong@caas.cn;通讯作者:韩书庆,副研究员,主要从事畜禽行为识别和畜牧物联网技术研究,E-mail:hanshuqing@caas.cn。
  • 相关文献

参考文献17

二级参考文献148

共引文献2158

同被引文献35

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部