期刊文献+

采用特征预处理ICP算法的机器人运动环境建图 被引量:1

Map Creation of Robot Motion Environment Using Feature Preprocessing ICP Algorithm
在线阅读 下载PDF
导出
摘要 针对机器人运动环境建图中迭代最近点(ICP)算法的扫描配准过程存在关联点对对应困难、迭代初值要求高的问题,首先,提出一种特征预处理的粗配准方法,以保证配准过程的迭代初值较小;然后,基于扫描点过滤思想对粗配准后存在较大误差的数据进行过滤,剔除测量噪声,提高点对关联准确率.结果表明:经过特征预处理的粗配准及噪声剔除后的改进ICP算法能够有效地进行扫描配准,解决机器人运动环境建图存在的问题. For the scanning registration process of iterative closest point(ICP)algorithm in map creation of robot motion environment,there are some problems,such as difficult correspondence of correlation point pair and high requirements for the iterative initial values,firstly,a coarse registration method with feature preprocessing is proposed,in order to ensure the iterative initial values of the registration process are relatively small.Then,based on the idea of scanning point filtering,the data with relatively large errors after coarse registration are filtered to eliminate measurement noise and improve the correlation accuracy of point pair.The results show that the improved ICP algorithm after coarse registration of feature preprocessing and noise elimination can effectively perform scanning registration,and solve the existing problems in map creation of robot motion environment.
作者 申鸿 李平 贾丙佳 SHEN Hong;LI Ping;JIA Bingjia(College of Information Science and Engineering,Huaqiao University,Xiamen 361021,China)
出处 《华侨大学学报(自然科学版)》 CAS 2022年第2期229-236,共8页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(61603144) 福建省自然科学基金资助项目(2018J01095) 福建省高校产学合作科技重大项目(2013H6016) 华侨大学中青年教师科技创新资助计划项目(ZQN-PY509) 华侨大学研究生科研创新基金资助项目(18014082046)。
关键词 建图 特征预处理 迭代最近点算法 移动机器人 map creation feature preprocessing iterative closest point algorithm mobile robot
作者简介 通信作者:李平(1981-),女,副教授,博士,主要从事非线性系统与智能控制、复杂控制系统的研究.E-mail:pingping_1213@126.com.
  • 相关文献

参考文献10

二级参考文献73

  • 1顾文华,周波,戴先中.基于ICP匹配算法的室内移动机器人定位[J].华中科技大学学报(自然科学版),2013,41(S1):262-266. 被引量:23
  • 2Smith R C, Cheeseman P. On the representation and estimation of spatial uncertainty. The International Journal of Robotics Research, 1986, 5(4): 56-68.
  • 3Bailey T, Durrant-Whyte H. Simultaneous localization and mapping: Part II. IEEE Robotics and Automation Magazine, 2006, 13(3): 108-117.
  • 4Thrun S, Liu Y F, Koller D, Ng A Y, Ghahramani Z, Durrant-Whyte H. Simultaneous localization and mapping with sparse extended information filters. The International Journal of Robotics Research, 2004, 23(7-8): 693-716.
  • 5Doucet A, de Freitas N, Murphy K P, Russell S J. Rao-Blackwellised particle filtering for dynamic Bayesian networks. In: Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence. Stanford, USA: Morgan Kaufmann Publishers. 2000. 176-183.
  • 6Eliazar A, Parr R. DP-SLAM: fast, robust simultaneous localization and mapping without predetermined landmarks. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence. Acapulco, Mexico: Lawrence Erlbaum Associates, 2003. 1135-1142.
  • 7Hahnel D, Burgard D, Fox D, Thrun S. An efficient fast-SLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2003. 206 - 211.
  • 8Grisetti G, Stachniss C, Burgard W. Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Transactions on Robotics, 2007, 23(1): 34-46.
  • 9Censi A. An ICP variant using a point-to-line metric. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation. Pasadena, USA: IEEE, 2008. 19-25.
  • 10Montemerlo M, Thrun S, Koller D, Wegbreit B. Fast-SLAM: a factored solution to simultaneous localization and mapping. In: Proceedings of the AAAI National Conference on Artificial Intelligence. Edmonton, Canada: KFUPM ePrints. 2002. 593-598.

共引文献165

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部