期刊文献+

含有阈值控制策略Hindmarsh-Rose系统的簇发振荡分析 被引量:3

Bursting Oscillation Analysis of HindmarshRose System with Threshold Control Strategy
在线阅读 下载PDF
导出
摘要 本文研究了阈值控制策略下不同尺度耦合系统的簇发振荡及其机理.以包含周期激励项的HindmarshRose模型为例,当激励频率与系统固有频率存在量级差异时,引入阈值控制策略,建立了频域间存在快慢耦合的Filippov系统.因激励项可以被视为一个慢变参数,我们可以相应地得到一个向量场不连续的广义自治系统,从而分析了系统在不同区域随慢变参数变化的平衡点及相关分岔.特别地,由于系统的非光滑特性,我们也分析了非光滑分岔出现的条件,给出了滑动区域的解析表达式.基于阈值控制策略,研究了三种切换条件下的簇发振荡,指出了非光滑分界面的变化会产生不同的非光滑分岔,进而导致不同滑动现象的发生,表现为不同形式的沉寂态与激发态.通过叠加转换相图与分岔图,簇发机理得以揭示. The main idea of this paper is to investigate the bursting oscillations as well as their mechanism in the multi-scale coupling system with threshold control strategy. Taking the periodically excited Hindmarsh-Rose model as an example, when there exists orders of magnitude gap between the exciting frequency and the natural frequency, a Filippov-type system with fast-slow coupling in the frequency domain is established based on the threshold control. Since the exciting term can be regarded as a slowvarying parameter, a generalized autonomous system featuring a discontinuous vector field has been obtained. Hence the equilibrium branches as well as the bifurcations of the autonomous system can be analyzed. Particularly, due to the discontinuousness, the conditions for the non-smooth bifurcations are analyzed, and the sliding regions are presented. Based on the threshold control strategy, bursting attractors with three different control thresholds are investigated, from which one can find that the variation of the non-smooth boundary can lead to different non-smooth bifurcations, causing different sliding movements that correspond to different forms of spiking states and quiescent states. By means of overlapping the transformation phase diagram and the bifurcation diagram, the mechanism of those bursting oscillations are revealed.
作者 葛亚威 陈少敏 毕勤胜 GE Yawei;CHEN Shaomin;BI Qinsheng(Faculty of Civil Engineering and Mechanics,Jiangsu University,Zhenjiang 212013,Jiangsu,China)
出处 《力学季刊》 CAS CSCD 北大核心 2021年第4期641-651,共11页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(11632008)。
关键词 非光滑分岔 簇发振荡 阈值控制策略 Filippov系统 nonsmooth bifurcations bursting oscillations threshold policy control Filippov system
作者简介 葛亚威,硕士生.研究方向:非线性动力学.E-mail:2211823007@stmail.ujs.edu.cn;通信作者:毕勤胜,教授.研究方向:动力学与控制.E-mail:qbi@ujs.edu.cn。
  • 相关文献

参考文献4

二级参考文献52

  • 1梁菊花,唐三一.具有综合控制策略的离散宿主病原体模型(英文)[J].生物数学学报,2008(2):193-201. 被引量:6
  • 2张思进,周利彪,陆启韶.线性碰振系统周期解擦边分岔的一类映射分析方法[J].力学学报,2007,39(1):132-136. 被引量:12
  • 3Sanyi Tang,Lansun Chen.Density-dependent birth rate, birth pulses and their population dynamic consequences[J].Journal of Mathematical Biology.2002(2)
  • 4Barclay HJ.Models for pest control using predator release,habitat management and pesticide release in combineation[].Journal of Applied Ecology.1982
  • 5Filippov A F.Differential equations with discontinuous right-hand sides[]..1988
  • 6Utkin VI.Sliding modes in control and optimization[]..1992
  • 7Metz J. A. J,Diekmann O.The Dynamics of Physiologically Structured Populations[]..1986
  • 8Meza,M.E.M.,Bhaya,A.,Kaszkurewicz,E.,Costa,M.I.S.Threshold policies control for predator–prey systems using a control Liapunov function approach[].Theoret Popul Biol.2005
  • 9Costa M I S,Meza M E M.Application of a threshold policy in the management of multispecies fisheries and predator culling[].IMA Mathematical Medicine and Biology.2006
  • 10Bernardo M D,Budd C J,Champneys A R,et al.Bifurcations in nonsmooth dynamical systems[].Journal of Society for Industrial and Applied Mathematics Review.2008

共引文献14

同被引文献21

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部