期刊文献+

GhCDPK4基因的克隆和功能分析 被引量:2

Cloning and Functional Analysis of GhCDPK4 Gene
在线阅读 下载PDF
导出
摘要 为了研究棉花中GhCDPK4基因在响应非生物胁迫中所起的作用,通过PCR的方法克隆GhCDPK4基因,利用基因重组技术,构建植物过表达载体,采用农杆菌介导的叶盘法转化模式植物烟草,分析干旱和盐胁迫处理对转基因烟草表型和生理生化指标的影响。本研究成功克隆了属于棉花CDPK家族的基因GhCDPK4,构建了植物过表达载体pCAMBIA2300-GhCDPK4。实时荧光定量PCR(qRT-PCR)检测发现转基因烟草中GhCDPK4基因高水平表达,并且转基因烟草相比于野生型烟草表现出较强的耐旱和耐盐性,其中SOD、POD和CAT活性显著升高,而相对电导率和MDA含量降低。研究结果表明GhCDPK4基因可正向参与应答干旱和盐胁迫。 To study the role of GhCDPK4 gene in response to abiotic stressin cotton.GhCDPK4 gene was cloned by PCR,and the plant overexpression vector was constructed by gene recombination technology.The plant overexpression vector was transformed into tobacco by Agrobacterium-mediated leaf disk method.Finally,the effects of drought and salt stress on phenotype and physiological and biochemical indexes of transgenic tobacco were analyzed.In this study,the gene GhCDPK4 belonging to the CDPK family was successfully cloned from upland cotton,and the plant overexpression vector pCAMBIA2300-GhCDPK4 was constructed.High-level expression of GhCDPK4 gene in transgenic tobacco was detected by quantitative RT-PCR(qRT-PCR).After drought and salt stress treatment,the tolerance of transgenic tobacco to drought and salt stress increased,and the activities of SOD,POD and CAT increased significantly,while the relative conductivity and MDA content decreased.The results showed that GhCDPK4 gene was positively involved in response to drought and salt stress.
作者 侯梦娟 朱新霞 孔辉 史光珍 HOU Mengjuan;ZHU Xinxia;KONG Hui;SHI Guangzhen(College of Life Science,Shihezi University,Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps,Shihezi Xinjiang 832003,China)
出处 《西北农业学报》 CAS CSCD 北大核心 2022年第2期217-223,共7页 Acta Agriculturae Boreali-occidentalis Sinica
基金 国家自然科学基金(31760066)。
关键词 GhCDPK4 克隆 转基因 干旱和盐胁迫 GhCDPK4 Gene cloning Transgenic Drought and salt stress
作者简介 第一作者:侯梦娟,女,硕士研究生,研究方向为生物化学与分子生物学,E-mail:1793577662@qq.com;通信作者:朱新霞,女,博士,副教授,研究方向为植物生物技术,E-mail:302641316@qq.com。
  • 相关文献

参考文献3

二级参考文献58

  • 1Yoon, G.M., Cho, H.S., Ha, H.J., Uu, J.R., and Lee, H.S. (1999). Characterization of NtCDPK1, a calcium-dependent protein kinasegene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol. Biol. 39, 991-1001.
  • 2Zhao, Y., Pokutta, S., Maurer, R, Lindt, M., Franklin, R.M., and Kappes, B. (1994). Calcium-binding properties of a calcium-dependent protein kinase from Plasmodium falciparum andthe significance of individual calcium-binding sites for kinase activation. Biochem. 33, 3714-3721.
  • 3Zhu, S.-Y.o et al. (2007). Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell. 19, 3019-3036.
  • 4Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
  • 5Geiger, D., et al. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc. Natl Acad. Sci. U S A. 106, 21425-21430.
  • 6Geiger, D., et al. (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca^2+ affinities. Proc. Natl Acad. Sci. U S A. 107, 8023-8028.
  • 7Harmon, A.C., Gribskov, M., and Harper, J.F. (2000). CDPKs-a kinase for every Ca^2+ signal? Trends Plant Sci. 5, 154-159.
  • 8Harmon, A.C., Putnam-Evans, C., and Cormier, M.J. (1987). A calcium-dependent but calmodulin-independent protein kinase from Soybean. Plant Physiol. 83, 830-837.
  • 9Harper, J.F., and Harmon, A.C. (2005). Plants, symbiosis and parasites: a calcium signalling connection. Nat. Rev. Mol. Cell Biol. 6, 555-566.
  • 10Harper, J.F., Breton, G., and Harmon, A. (2004). Decoding Ca^2+ signals through plant protein kinases. Ann. Rev. Plant Biol. 55, 263-288.

共引文献348

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部