期刊文献+

基于改进SSD算法对奶牛的个体识别 被引量:7

Individual Recognition of Dairy Cow Based on Improved SSD Algorithm
在线阅读 下载PDF
导出
摘要 为了实现养殖场环境下无接触、高精度的奶牛个体有效识别,针对SSD(single shot multibox detector)算法识别准确率不高的问题,提出一种基于浅层特征模块的改进SSD(shallow feature module SSD,SFM-SSD)算法。将原始SSD算法的主干网络由VGG16替换为MobileNetV2,以降低网络的运算量,改善检测的实时性;针对SSD网络结构的浅层特征图设计浅层特征模块,扩大浅层特征图的感受视野,提高浅层特征图对目标物体的特征提取能力;利用K均值聚类算法重构区域候选框,提高算法的检测精度。实验结果表明:在奶牛个体识别任务中,SFM-SSD算法的平均准确率比原始的SSD算法提升3.13个百分点。同时检测的实时性也得到改善。 To implement the non-contact and high-precision identification of dairy cows in farm environment, an improved SSD(shallow feature module SSD, SFM-SSD)algorithm based on shallow feature module is proposed to solve the problem that SSD(single shot multibox detector)algorithm is not accurate for target recognition. Firstly, the backbone network of the original SSD algorithm is replaced by VGG16 with MobileNetV2. Secondly, the shallow feature module is designed for the shallow feature map of SSD network structure to expand the perception field of shallow feature map and improve the feature extraction ability of shallow feature map for target object. Finally, the K-means clustering algorithm is used to reconstruct the region candidate frame to improve the detection accuracy of the algorithm. Experimental results show that the average accuracy of SFM-SSD algorithm is 3.13 percentage points higher than that of traditional SSD algorithm. Meanwhile, the real-time performance of detection is also improved.
作者 邢永鑫 孙游东 王天一 XING Yongxin;SUN Youdong;WANG Tianyi(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第2期208-214,共7页 Computer Engineering and Applications
基金 贵州省科技支撑计划(SY[2017]2881)。
关键词 深度学习 目标检测 反残差网络 深度可分离卷积 特征增强模块 deep learning target detection anti residual network deep separable convolution feature enhancement module
作者简介 邢永鑫(1993-),男,硕士研究生,主要研究方向为深度学习、目标检测;孙游东(1995-),男,硕士研究生,主要研究方向为人工智能、量子通信;通信作者:王天一(1989-),男,博士,副教授,主要研究方向为量子通信、图像处理、计算机视觉,E-mail:tywang@gzu.edu.cn。
  • 相关文献

参考文献8

二级参考文献147

  • 1田富洋,王冉冉,刘莫尘,王震,李法德,王中华.基于神经网络的奶牛发情行为辨识与预测研究[J].农业机械学报,2013,44(S1):277-281. 被引量:34
  • 2张海亮,何东健.肉牛体形参数计算机视觉检测[J].农业机械学报,2006,37(2):164-167. 被引量:5
  • 3MAZRIER H, TAL S,AIZINBUD E,et al. A field investigation of the use of the pedometer for the early detection of lameness incattle[ J]. The Canadian Veterinary Journal, 2006,47(9) : 883.
  • 4CHAPINAL N,PASSILLE AMD, PASTELL M, et al. Measurement of acceleration while walking as an automated method for gaitassessment in dairy cattlef J]. Journal of Dairy Science, 2011 , 94(6) : 2895 -2901.
  • 5MUNKSGAARD L, VAN REENEN C G, BOYCE R. Automatic monitoring of lying, standing and walking behavior in dairy cattle\_C~\ //ADSA/ASAS 2006 Annual Meeting, 2006.
  • 6THORUP V M , MUNKSGAARD L, ROBERT P E, et al. Lameness detection via leg-mounted accelerometers on dairy cows on fourcommercial farms [J]. Animal, 2015 , 9( 10) ; 1704 - 1712.
  • 7YUNTA C, GUASCH I,BACH A. Short communication : Lying behavior of lactating dairy cows is influenced by lamenessespecially around feeding time[ J]. Journal of Dairy Science, 2012 , 95(11) : 6546 - 6549.
  • 8RAJKONDAWAR P G, LEFCOURT A M,NEERCHAL N K, et al. The development of an objective lameness scoring system fordairy herds : pilot study [ J]. Transactions of the ASABE , 2002 , 45(4) : 1123 - 1125.
  • 9RAJKONDAWAR P G, LIU M , DYER R M , et al. Comparison of models to identify lame cows based on gait and lesion scores,and limb movement variables[ J]. Journal of Dairy Science,2006 , 89( 11 ) : 4267 ~ 4275.
  • 10PASTELL M E,KUJALA M. A probabilistic neural network model for lameness detection[ J]. Journal of Dairy Science, 2007,90(5) : 2283 -2292.

共引文献225

同被引文献102

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部