期刊文献+

基于Massive MIMO及频谱叠加的5G SA网络上行优化方法 被引量:3

5G SA Network Uplink Optimization Method Based on Massive MIMO and Spectrum Superposition
在线阅读 下载PDF
导出
摘要 大规模多输入多输出(Multiple-Input Multiple-Output, MIMO)可以有效提升5G SA网络的上行链路数据传输速率以及可靠性。针对5G SA网络上行链路速率和覆盖不均衡的情况,提出了基于大规模MIMO的分组算法,将发送信号矢量进行分组,组内采用最大似然检测,组外采用基于正交三角分解(QR分解)的干扰消除检测,并且结合5G频谱的叠加策略,在降低算法复杂度的同时,有效提升网络覆盖和速率。通过5G SA现网实测,通过MIMO降低分组数量能够提升分组检测性能,结合上行低频段频谱叠加策略能够有效提升5G SA网络上行覆盖30%,提升5G SA网络上行平均速率40%~80%,特别是弱覆盖边缘的网络速率,最高可达600%。 Massive Multiple-Input Multiple-Output(MIMO) can greatly improve the uplink data transmission rate and data transmission reliability of 5 G SA networks.To solve the problem of the imbalance of uplink rate and coverage of 5 G SA networks, a grouping algorithm based on massive MIMO is proposed to group the transmitted signal vectors.Maximum likelihood detection is used in the group, and interference cancellation detection based on orthogonal triangular decomposition(QR decomposition) is used outside the group.Combined with the overlay strategy of 5 G spectrum, the algorithm can improve the network uplink coverage and rate while reducing the complexity.The results of an actual measurement of 5 G SA network show that by reducing the number of packets through MIMO,the packet detection performance can be improved.Combined with the uplink low-frequency spectrum overlay strategy, the uplink coverage of 5 G SA network can be increased by about 30%,and the average uplink rate 40%~80%.In particular, the network rate at the edge of weak coverage can be increased by up to 600% at most.
作者 蒋建峰 孙金霞 尤澜涛 张凤岩 JIANG Jianfeng;SUN Jinxia;YOU Lantao;ZHANG Fengyan(Institute of Services Outsourcing,Suzhou Industrial Park,Suzhou 215123,China;School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210000,China;School of Computer Science,Soochow University,Suzhou 215123,China;Anhui Branch,China Telecom Co.,Ltd.,Anhui 230000,China)
出处 《无线电工程》 北大核心 2022年第1期127-133,共7页 Radio Engineering
基金 国家自然科学基金(61702351) 江苏省博士后研究基金(2018K009B) 江苏省专业带头人高端研修项目成果(2020GRFX074) 江苏省青蓝工程项目成果(202010)。
关键词 5G SA 大规模多输入多输出 频谱叠加 QR分解 似然检测 5G SA massive MIMO spectrum overlay QR decomposition likelihood detection
作者简介 蒋建峰,男,(1983-),毕业于南京邮电大学计算机应用技术专业,硕士,副教授。主要研究方向:5G网络技术、通信技术、虚拟化和云计算技术;孙金霞,女,(1984-),硕士,讲师。主要研究方向:5G网络技术、通信技术;尤澜涛,男,(1979-),博士,副教授。主要研究方向:并行计算;张凤岩,男,(1985-),硕士,高级工程师。主要研究方向:5G、云计算和数字化转型。
  • 相关文献

参考文献15

二级参考文献49

  • 1龚艳萍.5G上行增强技术的比较浅析[J].电信科学,2020,36(S01):62-65. 被引量:10
  • 2LI Ye, SESHADRI N, ARIYAVISITAKUL S.Channel Esti- mation for OFDM Systems with Transmitter Diversity in Mobile Wireless Channels [J].IEEE Journal on Selected Areas in Communications, 1999,17(3) :461-471.
  • 3JEON W G,PAIK K H,CHO Y S.An Efficient Channel Estimation Technique for OFDM Systems with Transmitter Diversity [J].IEICE Transactions on Communications ; Mo- bile Multimedia Communications, 2001 ( 4 ) : 967- 974.
  • 4NG J C L,LETAIEF K B,MURCH R D.Complex Optimal Sequences with Constant Magnitude for Fast Channel Esti- mation Initialization[ J ]. Communications, 1EEE Transactions on,1998,4(3) :305-308.
  • 5MORELI M, MENGALI U.A Comparison of Plilot-aided Channel Estimation Method for OFDM Systems [J].IEEE Trans.on Signal Processing,2001,49(12) :3 065-3 073.
  • 6J J van de Beek, EDFORS O, SANDELL M, et al. On Channel Estimation in OFDM Systems [ J ]. IEEE VTC ' 95,1995,2:815-819.
  • 7EDFORS Ove,SANDEL Magnus, J J van de Beek, et al. Analysis of DFT-based Channel Estimators forOFDM [J].Wireless Personal Communications ,2000,12( 1 ) :55-70.
  • 8李维英,李建东,李红艳,等.用于OFDM系统的改进型Ls信道估计方法[P].中国专利:CNl01115046A,2008—01—30.
  • 9IEEE Std. 802. 16e-2005. Air Interface For Fixed Broadband Wireless Access Systems[ S ].
  • 10LIU Changan YAN Xiaohu LIU Chunyang WU Hua.The Wolf Colony Algorithm and Its Application[J].Chinese Journal of Electronics,2011,20(2):212-216. 被引量:36

共引文献70

同被引文献16

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部