期刊文献+

从Stackelberg-Nash均衡视角对动态社交网络系统中的意见分层建模分析 被引量:3

Analysis of Hierarchical Opinion Modeling in Dynamic Social Network System from the Perspective of Stackelberg Nash Equilibrium
原文传递
导出
摘要 文章基于社交网络系统中的DeGroot模型,对多个体讨论问题时意见在多智能体网络中的演变进行了研究,在此过程中加入Stackelberg-Nash均衡博弈思想,建立了一种分层控制的智能体交互协议和决策机制.首先,从Stackelberg-Nash均衡的角度,对社交网络系统进行分层优化设计,其中制定并研究的分层决策机制是由一个主要智能体和多个次要智能体组成.主要智能体具有产生策略和预设目标的能力,次要智能体会根据博弈策略演变不断自我优化,产生应对方案并传递给主要智能体.然后,主要智能体将次要智能体的方案整合得到最佳解决方案,再将最佳方案与预设目标进行对比,若误差较大,则进一步优化,直至获得最优解决方案.最后,通过仿真验证了意见分层建模的稳定性和收敛性. This paper studies the evolution of opinions when multiple individuals discuss a problem in a multi-agent network,which is based on the DeGroot model in the social network system.In this process,Stackelberg-Nash equilibrium game idea is taken into consideration to establish a hierarchical control agent interaction protocol and decision-making mechanism.Firstly,from the perspective of Stackelberg-Nash equilibrium,we put forward a hierarchical optimization design of the social network system,in which the hierarchical decision-making mechanism developed and studied is composed of one major agent and several minor agents.The major agent has the ability to generate a preset goal and strategies,while the minor agent constantly selfoptimizes according to the evolution of game strategies to generate solutions and pass them to the major agent.Secondly,the major agent integrates the solutions of the minor agents to get the best solution.Then,the best solution is compared with the preset target.If the errors are large,the optimal solution is further optimized until the optimal solution is obtained.Finally,the stability and convergence of the model are verified by simulation.
作者 闫晓雪 纪志坚 YAN Xiaoxue;JI Zhijian(School of Automation,Qingdao University,Qingdao 266071;Shandong Key Laboratory of Industrial Control Technology,Qingdao 266071)
出处 《系统科学与数学》 CSCD 北大核心 2021年第11期3029-3048,共20页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61873136,62033007,61873146,61703237) 山东省泰山学者攀登计划 山东省泰山学者计划(ts20190930)资助课题。
关键词 社交网络 多智能体网络 Stackelberg-Nash均衡(SNG) 意见分层优化 Social network multi-agent network stackelberg-nash equilibrium(SNG) opinion stratification optimization
  • 相关文献

参考文献5

二级参考文献73

  • 1王先甲,全吉,刘伟兵.有限理性下的演化博弈与合作机制研究[J].系统工程理论与实践,2011,31(S1):82-93. 被引量:156
  • 2王龙,伏锋,陈小杰,楚天广,谢广明.演化博弈与自组织合作[J].系统科学与数学,2007,27(3):330-343. 被引量:16
  • 3Nowak M A. Five rules for the evolution of cooperation. Science, 2006, 314: 1560-1563.
  • 4Axelrod R. The Evolution of Cooperation. New York: Basic books, 1984.
  • 5Hofbauer J and Sigmund K. Evolutionary Games and Population Dynamics. Cambridge: Cambridge University Press, 1998.
  • 6Smith J M. Evolution and the Theory of Games. Cambridge: Cambridge University Press, 1982.
  • 7Albert R and Barabasi A L. Statistical mechanics of complex networks. Rev. Mod. Phys., 2002, 74: 47-97.
  • 8Szabo G and Fath G. Evolutionary games on graphs. Phys. Rep., in press. [arXiv:cond-mat/0607344].
  • 9Doebeli M and Hauert C. Models of cooperation based on the Prisoner's Dilemma and the Snowdrift game. Ecology Letters, 2005, 8: 748-766.
  • 10Nowak M A and Sigmund K. Evolutionary dynamics of biological games. Science, 2004, 303: 793-799.

共引文献55

同被引文献27

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部