期刊文献+

基于改进QMAP的贝叶斯网络参数学习算法 被引量:5

Bayesian network parameter learning algorithm based on improved QMAP
在线阅读 下载PDF
导出
摘要 小数据集使得贝叶斯网络参数学习中的统计信息不准确,导致只依靠数据难以得到准确的贝叶斯网络参数。定性最大后验估计(QMAP)方法是目前小数据集条件下贝叶斯网络参数学习精度最高的算法。然而,当参数约束数量较多或参数可行域较小时,QMAP算法中的拒绝-接受采样过程会变得极为耗时甚至难以完成。为了提高QMAP算法的学习效率同时又尽量不影响其学习精度,设计了一种约束区域中心点的解析计算方法来替代原有的拒绝-接受采样计算方法。结合参数约束构建一个求解约束区域边界点的目标优化模型;利用凸优化引擎来求解该目标优化模型,获得约束区域的边界点和中心点;通过获得的约束区域中心点改进现有的QMAP算法。仿真实验证明,所提出的CMAP算法的参数学习精度稍差于QMAP算法,但计算效率比QMAP算法提高了2~5倍。 Small data sets make the statistical information in Bayesian network parameter learning inaccurate,which makes it difficult to get accurate Bayesian network parameters based on data.Qualitative maximum a posteriori estimation(QMAP)is the most accurate algorithm for Bayesian network parameter learning under the condition of small data sets.However,when the number of parameter constraints is large or the parameter feasible region is small,the rejection-acceptance sampling process in QMAP algorithm will become extremely time-consuming.In order to improve the learning efficiency of QMAP algorithm and not affect its learning accuracy as much as possible,a new analytical calculation method of the center point of constrained region is designed to replace the original rejection-acceptance sampling calculation method.Firstly,a new objective function is designed,and a constrained objective optimization problem for solving the boundary points of the constrained region is constructed.Secondly,a new optimization engine is used to solve the objective optimization problem,and the boundary points and center points of the constrained region are obtained.Finally,the existing QMAP algorithm is improved by the obtained center points.The simulation results show that the CMAP algorithm proposed in this paper has a slightly worse parameter learning accuracy than the QMAP algorithm,but its computational efficiency is 2-5 times higher than that of the QMAP algorithm.
作者 邸若海 李叶 万开方 吕志刚 王鹏 DI Ruohai;LI Ye;WAN Kaifang;LYU Zhigang;WANG Peng(School of Electronic and Information Engineering, Xi′an Technological University, Xi′an 710021, China;School of Electronic and Information, Northwestern Polytechnical University, Xi′an 710072, China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2021年第6期1356-1367,共12页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金面上项目(62171360) 电子信息系统复杂电磁环境效应国家重点实验室基金(CEMEE2020Z0202B) 陕西省自然科学基础研究计划(2020JQ-816) 陕西省教育厅专项科研计划项目(20JK0680) 西安市科技计划项目(2020KJRC0033)资助。
关键词 贝叶斯网络 参数学习 定性最大后验估计 参数约束 目标优化 Bayesian network parameter learning qualitative maximum a posteriori estimation parameter constraints objective optimization
作者简介 邸若海(1986—),西安工业大学讲师,主要从事复杂系统建模、贝叶斯网络学习研究;通信作者:王鹏(1978—),西安工业大学教授,主要从事复杂系统建模、图像处理研究。e-mail:wp-xatu@163.com。
  • 相关文献

参考文献5

二级参考文献66

  • 1Meng D, Sivakumar K, Kargupta H. Privacy-sensitive Bayesian net- work parameter learning[C] // Proc. of the Fourth IEEE Interna- tional Conference on Data Mining, 2004487- 490.
  • 2Friedman N. The Bayesian structural EM algorithm[C]//Proc. of the Fourteenth Annual Conference on Uncertainty in Artifi- cial Intelligence, 1998 : 125 - 133.
  • 3Lamine F B, Kalti K,Mahjoub M A. The threshold EM algo- rithm for parameter learning in Bayesian network with incom- plete data[J]. International Journal of Advanced Computer Sci- ence and Applications, 2011, 2(7) : 86 - 91.
  • 4Ramoni M, Sebastiani P. Robust learning with missing data[J]. Machine Learning Archive, 2001,45(2) :147 - 170.
  • 5Liao W H, Ji Q. Learning Bayesian network parameters under incomplete data with domain knowledge [J]. Journal Pattern Recognition, 2009,42(11) 3046 - 3056.
  • 6Feelders A. A new parameter learning method for bayesian net- works with qualitative influences[-C//Proc, of the 23rd Con- ference on Uncertainty in Artificial Intelligence, 2007:117 - 124.
  • 7Altendorf E, Restificar A C, Dietterieh T G. Learning from sparse data by exploiting monotonicity constraints[C]//Proc. of the 21st Conference in Uncertainty in Artificial Intelligence, 2005 : 18 - 26.
  • 8Campos C P, Tong Y, Ji Q. Constrained maximum likelihood learning of Bayesian networks for facial action reeognition[C]// Proc. of the lOth European Conference on Computer Vision Part l]I, 20081168 - 181.
  • 9Campos C P, Zeng Z, Ji Q. Structure learning of Bayesian net- works using constraints[C]//Proc, of the 2 6th Annual Interna tional Conference on Machine Learning, 2009:113 - 120.
  • 10Lee S H, Lim S, Cho S B. Parameter learning in Bayesian network using semantic constraints of conversational feedback[C//Proc, of the llth Pacific Rim International Conference on Trends in Arti- ficial Intelligence, 2010:467 - 476.

共引文献35

同被引文献60

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部