期刊文献+

基于鸽群优化BP神经网络的短期电力负荷预测方法研究 被引量:10

Research on Short-Term Load Forecasting Method Based on Pigeon Group Optimization BP Neural Network
在线阅读 下载PDF
导出
摘要 针对短期负荷预测精度低、准确性较差等问题,本文提出将鸽群优化算法和误差反向传播(Back Propagation,BP)神经网络模型相结合用于短期电力负荷预测研究。本文介绍了鸽群优化算法的原理以及算法模型,并利用鸽群优化算法对BP神经网络的权值和阈值进行优化,得到BP神经网络预测模型的最优参数,构建负荷预测模型。对某市7月的平均负荷预测来验证预测模型的有效性,其结果表明,改进的模型能够降低BP神经网络的预测误差,提高预测精度,并具有一定的普适性。 Aiming at the problems of low accuracy and poor accuracy of short-term load forecasting,this paper proposes the combination of pigeon swarm optimization algorithm and back propagation(BP)neural network model for short-term power load forecasting.This paper introduces the principle and algorithm model of pigeon swarm optimization algorithm,optimizes the weight and threshold of BP neural network by using pigeon swarm optimization algorithm,obtains the optimal parameters of BP neural network prediction model,and constructs load prediction model.The results show that the improved model can reduce the prediction error of BP neural network,improve the prediction accuracy,and has certain universality.
作者 白苏赫 张铭飞 李丁 彭丹阳 BAI Suhe;ZHANG Mingfei;LI Ding;PENG Danyang(North China University of Water Resources and Electric Power,Zhengzhou Henan 450045,China)
出处 《信息与电脑》 2021年第19期39-42,共4页 Information & Computer
关键词 负荷预测 鸽群算法 BP神经网络 load forecasting pigeon swarm algorithm BP neural network
作者简介 白苏赫(1995-),女,满族,辽宁抚顺人,硕士研究生在读。研究方向:电力系统与控制。
  • 相关文献

参考文献10

二级参考文献88

  • 1康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:516
  • 2沈百新.利用专家系统预测地区用电负荷[J].电力需求侧管理,2005,7(2):49-50. 被引量:10
  • 3王勇,黄国兴,彭道刚.带反馈的多元线性回归法在电力负荷预测中的应用[J].计算机应用与软件,2008,25(1):82-84. 被引量:37
  • 4Tsekouras G J,Kotoulas P B,Tsirekis C D,et al.A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers[J].Electric Power Systems Research,2008,78(9):1494-1510.
  • 5Duan Pan,Xie Kaigui,Guo Tingting,et al.Short-term load forecasting for electric power systems using the PSO-SVR and FCM clustering techniques[J].Energies,2011,4(1):173-184.
  • 6Thordarson F O,Madsen H,Nielsen H A,et al.Conditional weighted combination of wind power forecasts[J].Wind Energy,2010,13(8):751-763.
  • 7Germi,M B,Mirjavadi M, Namin A S S,et al.A hybrid model for daily peak load power forecasting based on SAMBA and neural network[J].Journal of Intelligent & Fuzzy Systems,2014,27(2):913-920.
  • 8Taylor J W.Short-term load forecasting with exponentially weighted methods[J].IEEE Transactions on Power Systems,2012,27(1):458-464.
  • 9Borges C E,Penya Y K,Fernandez I.Evaluating combined load forecasting in large power systems and smart grids[J].IEEE Transactions on Industrial Informatics,2013,9(3):1570-1577.
  • 10Yao Lan,Jiang Yulian,Xiao Jian.Short-term power load forecasting by interval type-2 fuzzy logic system[J].Information Computing and Applications,2011,244:575-582.

共引文献743

同被引文献74

引证文献10

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部