期刊文献+

基于CFD技术的舵叶翼型选用分析

Analysis of rudder airfoil selection based on CFD technology
在线阅读 下载PDF
导出
摘要 舵叶选型通过经验公式和母型船数据确定,方法具有一定局限性。为优化舵叶选型流程,以Exploration号邮轮为例,通过CFD软件基于RANS方程和SST k-ω模型对NACA翼型和高效翼型为研究对象进行数值仿真,得到不同攻角下的升力系数和阻力系数,对不同剖面类型和厚度比的翼型,结合速度矢量图和压力云图分析水动力性能,并与理论计算数据和实船数据进行比较。结果表明,不同翼型厚度在全舵角范围内表征出不同的升阻比特性,增加翼型厚度有利于拓宽升阻比范围。高效翼型虽然舵效平均提高40%,但是不能忽略阻力对其快速性的影响,尾部涡流导致表面压力升高对其强度也产生负面影响。研究结果有利于了解不同剖面翼型舵叶的水动力性能,为舵叶翼型选型设计提供参考依据。 The rudder selection was determined by empirical formula and data of model ship,which has some limitations.In order to optimize the rudder selection process,taking Exploration cruise ship as an example,based on RANS equation and SST k-ω turbulence model by CFD software to simulate the NACA airfoil and the high-efficiency airfoil.The lift coefficient and drag coefficient are obtained at different angles of attack.For airfoils with different section types and thickness ratios,the hydrodynamic performance is analyzed with velocity vector and pressure cloud diagram,compared with theoretical calculation data and ship data.The result shows that different airfoil thickness has different lift-drag ratio characteristics in whole rudder angles.Increasing airfoil thickness is beneficial to broaden the range of lift-drag ratio.Although the steerage of high-efficiency airfoil is increased by 40%,the influence of drag on its rapidity can’t be ignored.The increase of surface pressure caused by vortex has a negative impact on its strength.The results are helpful to understand the hydrodynamic performance of the rudder with different sections,and provide a reference for the selection and design of rudder airfoil.
作者 耿国祥 胡义 董有凡 王帆 何金帅 GENG Guo-xiang;Hu Yi;DONG You-fan;WANG Fan;HE Jin-shuai(Wuhan University of Technology,Wuhan 430063,China)
出处 《舰船科学技术》 北大核心 2021年第21期57-62,共6页 Ship Science and Technology
基金 工信部高技术船舶资助项目(MC-201918-C10)。
关键词 CFD 剖面翼型 水动力特性 数值仿真 CFD profile airfoil hydrodynamic characteristics numerical simulation
作者简介 耿国祥(1995-),男,硕士,研究方向为船舶自动化。
  • 相关文献

参考文献5

二级参考文献25

  • 1余贤红,林俊兴.带副舵的潜艇尾舵受力分析[J].船海工程,2005,34(6):28-30. 被引量:6
  • 2朱文蔚,王文富,郭斌灿,贺斌.一种实用的高性能对称翼型[J].上海交通大学学报,1996,30(10):35-40. 被引量:7
  • 3Montgomery D C.实验设计与分析[M].北京:人民邮电出版社,2009.
  • 4Campana E F, Peri D, Pinto A, Tahara Y, Stem F. Shape optimization in ship hydrodynamics using computational fluid dy- namics[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 196: 634-651.
  • 5Peri D, Campana E F. Multidisciplinary design optimization of a naval surface combatant[J]. Journal of Ship Research, 2003, 41(1): 1-12.
  • 6Tahara Y, Peri D, Campana E F, Stern F. Computational fluid dynamics-Based multi-objective optimization of a surface combatant[J]. Marine Science and Technology, 2008, 13(2): 95-116.
  • 7Tahara Y, Peri D. Single and Multi-objective design optimization of a fast multi-hull ship numerical and experimental resuits[C]//27th Symposium on Naval Hydrodynamics. Seoul, Korea, 2008: 25-33.
  • 8梁军,许劲松,谢杰等.基于设计空间探索的型线自动优化[C].杭州:中国造船工程学会会议论文集,2008:50-63.
  • 9Srinivas N, Deb K. Multi-objective function optimization using non-dominated sorting genetic algorithms[J]. Evolutionary Computation, 1995, 2(3): 221-248.
  • 10Deb K, Agrawal S, Pratap A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[C]//Proc of the Parallel Problem Solving from Nature VI Conf. Paris, 2000: 849-858.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部