期刊文献+

Bright, periodic, compacton and bell-shape soliton solutions of the extended QZK and (3+1)-dimensional ZK equations 被引量:1

原文传递
导出
摘要 The(3+1)-dimensional Zakharov–Kuznetsov(ZK) and the new extended quantum ZK equations are functional to decipher the dense quantum plasma, ion-acoustic waves, electron thermal energy,ion plasma, quantum acoustic waves, and quantum Langmuir waves. The enhanced modified simple equation(EMSE) method is a substantial approach to determine competent solutions and in this article, we have constructed standard, illustrative, rich structured and further comprehensive soliton solutions via this method. The solutions are ascertained as the integration of exponential, hyperbolic,trigonometric and rational functions and formulate the bright solitons, periodic, compacton, bellshape, parabolic shape, singular periodic, plane shape and some new type of solitons. It is worth noting that the wave profile varies as the physical and subsidiary parameters change. The standard and advanced soliton solutions may be useful to assist in describing the physical phenomena previously mentioned. To open out the inward structure of the tangible incidents, we have portrayed the three-dimensional, contour plot, and two-dimensional graphs for different parametric values. The attained results demonstrate the EMSE technique for extracting soliton solutions to nonlinear evolution equations is efficient, compatible and reliable in nonlinear science and engineering.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第10期23-35,共13页 理论物理通讯(英文版)
作者简介 M S Osman,E-mail:mofatzi@sci.cu.edu.eg,https:yorcid.org/0000-0002-5783-0940。
  • 相关文献

参考文献2

二级参考文献35

  • 1C. Rogers and W.F. Shadwick, Backlund Transformations, Academic Press, New York (1982).
  • 2R. Hirota, Phys. Rev. Lett. 27 (1971) 1192.
  • 3M.L. Wang, Phys. Lett. A 213 (1996) 279.
  • 4W. Malfiiet, Am. J. Phys. 60 (1992) 650.
  • 5Y.B. Zhou, M.L. Wang, and Y.M. Wang, Phys. Lett. A 308 (2003) 31.
  • 6M.L. Wang and Y.B. Zhou, Phys. Lett. A 318 (2003) 84.
  • 7M.L. Wang, Y.M. Wang, and J.L. Zhang, Chin. Phys. 12 (2003) 1341.
  • 8S.J. Liao, Ph.D. Dissertation (in English), Shanghai Jiao Tong University (1992).
  • 9S.J. Liao, A Kind of Linear Invariance under Homotopy and Some Simple Applications of It in Mechanics, Bericht Nr. 520, Institut Fuer Schifl'bau der Universitaet Hamburg (1992).
  • 10S. Liu, Z. Fu, S. Liu, and Q. Zhao, Phys. Lett. A 289 (2001) 69.

共引文献11

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部