摘要
Metal-nitrogen-carbon(M-N-C)single-atom catalysts exhibit desirable electrochemical catalytic properties.However,the replacement of N atoms by heteroatoms(B,P,S,etc.)has been regarded as a useful method for regulating the coordination environment.The structure engineered M-N-C sites via doping heteroatoms play an important role to the adsorption and activation of the oxygen intermediate.Herein,we develop an efficient strategy to construct dual atomic site catalysts via the formation of a Co_(1)-PN and Ni1-PN planar configuration.The developed Co_(1)-PNC/Ni1-PNC catalyst exhibits excellent bifunctional electrocatalytic performance in alkaline solution.Both experimental and theoretical results demonstrated that the N/P coordinated Co/Ni sites moderately reduced the binding interaction of oxygen intermediates.The Co_(1)-PNC/Ni1-PNC endows a rechargeable Zn-air battery with excellent power density and cycling stability as an air-cathode,which is superior to that of the benchmark Pt/C+IrO_(2).This work paves an avenue for design of dual single-atomic sites and regulation of the atomic configuration on carbon-based materials to achieve high-performance electrocatalysts.
基金
This work was supported by the National Natural Science Foundation of China(Nos.21971135,21925202,21872076,and 21590792)
the National Key R&D Program of China(Nos.2017YFA0700101 and 2016YFA0202801)
Beijing Natural Science Foundation(No.JQ18007).
作者简介
Botao Hu,contributed equally to this work;Aijian Huang,contributed equally to this work;Address correspondence to:Chen Chen,cchen@tsinghua.edu.cn;Address correspondence to:Qing Peng,pengqing@tsinghua.edu.cn;Address correspondence to:Yadong Li,ydli@tsinghua.edu.cn。