期刊文献+

基于樽海鞘群与粒子群混合优化算法的特征选择 被引量:9

Feature selection based on hybrid optimization of salp swarmalgorithm and particle swarm optimization
在线阅读 下载PDF
导出
摘要 针对现有特征选择方法中存在的收敛速度慢和计算效率低等问题,提出了一种基于樽海鞘群与粒子群优化的混合优化(hybrid optimization of salp swarm algorithm and particle swarm optimization,HOSSPSO)特征选择方法,该方法在樽海鞘群算法(salp swarm algorithm,SSA)的基础上,引入粒子群优化(particle swarm optimization,PSO),提高了SSA的收敛速度,改进了探索和开发步骤的效率,增加了解空间更多的灵活性和多样性,使得方法能够迅速获得全局最优值。为了验证算法的性能,在2个实验序列上进行了测试:第一个实验序列使用基准函数,将HOSSPSO与标准SSA、PSO进行了比较;第二个实验序列采用不同的UCI数据集,通过提出的算法确定最佳特征集。实验结果表明,相比于其他优化算法,HOSSPSO的性能更具优势,在多项评估指标中获得较好的效果,能以极少量的特征获得最大的分类精度。 Aiming at the problems of slow convergence and low computational efficiency in the existing feature selection methods,we propose a feature selection method based on hybrid optimization of salp swarm algorithm and particle swarm optimization(HOSSPSO).Based on the optimization algorithm of salp swarm algorithm,particle swarm optimization is introduced to improve the convergence speed of SSA algorithm,improve the efficiency of exploration and development steps,and increase the flexibility and diversity of learning space,so that the method can quickly obtain the global optimal value.In order to verify the performance of the algorithm,two experimental sequences are tested.The first experimental sequence is compared with standard SSA and PSO by using benchmark function.At the same time,the second experimental sequence uses different UCI data sets to determine the best feature set through the proposed algorithm.The experimental results show that compared with other optimization algorithms,the proposed algorithm has more advantages in performance,obtains better results in many evaluation indexes,and obtains the maximum classification accuracy with a few features.
作者 吴晓燕 刘笃晋 WU Xiaoyan;LIU Dujin(College of Intelligent Manufacturing,Sichuan University of Arts and Science,Dazhou 635000,P.R.China)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2021年第5期844-850,共7页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 四川省教育厅重点项目(20190041)。
关键词 特征选择 樽海鞘群算法 粒子群优化 全局优化 feature selection salp swarm algorithm particle swarm optimization global optimization
作者简介 通讯作者:吴晓燕(1981-),女,四川达州人,副教授,硕士,主要研究方向为计算机科学与技术。E-mail:1665713042@qq.com;刘笃晋(1971-),男,四川渠县人,副教授,博士,主要研究方向为数字图像处理和机器学习。E-mail:37678324@qq.com。
  • 相关文献

参考文献4

二级参考文献37

  • 1Hirschel E H, Weiland C. Design of hypersonic flight vehicles: some lessons from the past and future challenges [J]. CEAS Space Journal, 2010, 1 (1/2/3/4): 3 -22.
  • 2Williams P. Hermite-Legendre-Gauss-Lobatto direct tran- scription in trajectory optimization [J]. Journal of Guidance, Control, and Dynamics, 2009, 32 ( 4 ) : 1392 - 1395.
  • 3Huntington G T, Rao A V. Comparison of global and local collocation methods for optimal control [ J ]. Journal of Guidance, Control, and Dynamics, 2008, 31 (2): 432 - 436.
  • 4Jain S, Tsiotras P. Trajectory optimization using multiresolution techniques [ J ]. Journal of Guidance, Control, and Dynamics, 2008, 31 (5) : 1424 - 1436.
  • 5Wuerl A, Crain T, Braden E. Genetic algorithm and calculus of variations-based trajectory optimization technique [ J ]. Journal of Spacecraft and Rockets, 2003, 40 (6): 882 - 888.
  • 6Pontani M, Conway B A. Particle swarm optimization applied to space trajectories [J]. Journal of Guidance, Control, and Dynamics, 2010, 33(5) : 1429 - 1441.
  • 7Fesanghary M, Mahdavi M, Minary-Jolandan M, et al.Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems[ J ]. Computer Methods in Applied Mechanics and Engineering, 2008, 197 (33/.../40 ) : 3080 - 3091.
  • 8Sentinella M R, Casalino L. Cooperative evolutionary algorithm for space trajectory optimization [ J ]. Celestial Mechanics & Dynamical Astronomy, 2009,105 ( 1/2/3 ) : 211 -227.
  • 9Vavrina M A, Howell K C. Global low-thrust trajectory optimization through hybridization of a genetic algorithm and a direct method[C]//Proceedings ofAIAA/AAS Astrodynarnics Specialist Conference and Exhibit. Reston: American Institute of Aeronautics and Astronautics Inc. , 2008, article number : 2008 - 6614.
  • 10Subbarao K, Shippey B M. Hybrid genetic algorithm collocation method for trajectory optimization [ J ]. Journal of Guidance, Control, and Dynamics, 2009, 32 (4) :1396 - 1403.

共引文献37

同被引文献114

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部