期刊文献+

基于CNN和加权贝叶斯的最近邻图像标注方法 被引量:5

A Nearest Neighbor Image Annotation Method Based on CNN and Weighted Bayesian
在线阅读 下载PDF
导出
摘要 图像标注的准确性在很大程度上关系着图像检索的准确性。然而,传统的基于最近邻模型的图像自动标注方法不能有效提取图像底层特征,并且无法有效建立低级视觉特征到高级语义之间的映射关系,使得近邻图像搜索不准确从而影响图像标注的准确性。针对上述问题,提出了一种改进的基于CNN和加权贝叶斯的最近邻图像标注方法。首先,利用卷积神经网络(convolutional neural networks,CNN)提取图像特征,并依此特征搜索其近邻图像,构建候选标签集合;然后利用贝叶斯后验概率构建待标注图像的视觉特征与标签之间的映射关系;最后通过设定权重优化概率值并排序,得到最优的候选标签进而实现图像标注。在三个基准数据集Corel 5K,IAPRTC-12和ESP Game上进行实验,结果表明该方法在准确率、召回率与F1值上均取得了较好的效果。 The accuracy of image annotation is related to the accuracy of image retrieval to a great extent.However,the traditional image automatic annotation method based on the nearest neighbor model cannot effectively extract the features of the image,and the mapping relationship between low-level visual features and high-level semantics cannot be effectively established either.So the accuracy of the nearest neighbor images and labels is low.To solve the above problems,a neighbor image annotation method based CNN and weighted Bayesian is proposed.First,image features are extracted by using CNN,from which the nearest neighbor images are searched and the candidate labels are obtained.Then the mapping relationship between visual features and labels of the unlabeled image based on Bayesian posterior probability is constructed.Finally,the probability value is optimized and sorted according to set the weight,from which the optimal candidate labels are selected to realize image annotation.Experiments on three benchmark datasets Corel 5K,IAPRTC-12 and ESP Game show that the proposed method achieves better results in precision,recall and F1 value.
作者 王琳 张素兰 杨海峰 WANG Lin;ZHANG Su-lan;YANG Hai-feng(School of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《计算机技术与发展》 2021年第10期63-69,共7页 Computer Technology and Development
基金 国家自然科学基金项目(U1731126)。
关键词 图像自动标注 最近邻模型 映射关系 卷积神经网络 贝叶斯后验概率 automatic image annotation nearest neighbor model mapping relationship convolutional neural networks Bayesian posterior probability
作者简介 王琳(1996-),女,硕士研究生,研究方向为机器学习与图像语义标注;通讯作者:张素兰(1971-),女,教授,博士,CCF会员(66965M),研究方向为数据挖掘、机器学习与计算机视觉。
  • 相关文献

参考文献6

二级参考文献92

  • 1李道国,苗夺谦,张东星,张红云.粒度计算研究综述[J].计算机科学,2005,32(9):1-12. 被引量:54
  • 2刘仁金,黄贤武.图像分割的商空间粒度原理[J].计算机学报,2005,28(10):1680-1685. 被引量:24
  • 3李清勇,胡宏,施智平,史忠植.基于纹理语义特征的图像检索研究[J].计算机学报,2006,29(1):116-123. 被引量:25
  • 4张向荣,谭山,焦李成.基于商空间粒度计算的SAR图像分类[J].计算机学报,2007,30(3):483-490. 被引量:21
  • 5Datta R, Joshi D, Li J, Wang J Z. Image retrieval: ideas, influences, and trends of the new age. ACM Computing Sur- veys, 2008, 40(2): 1-60.
  • 6Zadeh L A. Fuzzy sets and information granularity. Ad- vances in Fuzzy Set Theory and Applications. Amsterdam: North-Holland Publishing, 1979. 3-18.
  • 7Yavlinsky A, Schofield E, Ruger S. Automated image an- notation using global features and robust nonparametric density estimation. In: Proceedings of the 4th International Conference on Image and Video Retrieval. Singapore, Sin- gapore: Springer, 2005. 507-517.
  • 8Feng S L, Manmatha R, Lavrenko V. Multiple Bernoulli rel- evance models for image and video annotation. In: Proceed- ings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2004. 1002-1009.
  • 9Bi J, Chen Y, Wang J Z. A sparse support vector machine approach to region-based image categorization. In: Proceed- ings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 1121-1128.
  • 10Zhang Q, Goldman S A, Yu W, Fritts J. Content-based im- age retrieval using multiple-instance learning. In: Proceed- ings of the 19th International Conference on Machine Learn- ing. Sydney, Australia: Morgan Kaufmann, 2002. 682-689.

共引文献2389

同被引文献45

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部