期刊文献+

改进U-Net的新冠肺炎图像分割方法 被引量:14

Improved U-Net Network for COVID-19 Image Segmentation
在线阅读 下载PDF
导出
摘要 新型冠状病毒肺炎(COVID-19)大流行疾病正在全球范围内蔓延。计算机断层扫描(CT)影像技术,在抗击全球COVID-19的斗争中起着至关重要的作用,诊断新冠肺炎时,如果能够从CT图像中自动准确分割出新冠肺炎病灶区域,将有助于医生进行更准确和快速的诊断。针对新冠肺炎病灶分割问题,提出基于U-Net改进模型的自动分割方法。在编码器中运用了在ImageNet上预训练好的EfficientNet-B0网络,对有效信息进行特征提取。在解码器中将传统的上采样操作换成DUpsampling结构,以此来充分获取病灶边缘的细节特征信息,最后通过模型快照的集成提高分割的精度。在公开数据集上的实验结果表明,所提算法的准确率、召回率和Dice系数分别为84.24%、80.43%和85.12%,与其他的语义分割算法相比,该方法能有效分割新冠肺炎病灶区域,具有良好的分割性能。 The novel corona virus pneumonia(COVID-19)pandemic is spreading globally.Computerized Tomography(CT)imaging technology plays a vital role in the fight against global COVID-19.When diagnosing new coronary pneu-monia,it will be helpful if the new coronary pneumonia focus area can be automatically and accurately segmented from the CT image,the doctor makes a more accurate and quick diagnosis.Aiming at the segmentation problem of new coronary pneumonia lesions,an automatic segmentation method based on the improved U-Net model is proposed.The Efficient-Net-B0 network pre-trained on ImageNet is used in the encoder to extract features of effective information.In the decoder,the traditional up-sampling operation is replaced with a DUpsampling structure,in order to fully obtain the detailed feature information of the lesion edge,and finally the accuracy of the segmentation is improved through the integration of model snapshots.The experimental results on the public data set show that the accuracy,recall and Dice coefficients of the pro-posed algorithm are 84.24%,80.43%and 85.12%,respectively.Compared with other segmentation networks,this method can effectively segment the neo-coronary pneumonia lesion area and has good segmentation performance.
作者 宋瑶 刘俊 SONG Yao;LIU Jun(Hubei Key Laboratory of Intelligent Information Processing and Real-Time Industrial Systems(Wuhan University of-Science and Technology),Wuhan 430065,China;School of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan 430065,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第19期243-251,共9页 Computer Engineering and Applications
关键词 新型冠状病毒肺炎(COVID-19) U-Net 语义分割 COVID-19 U-Net semantic segmentation
作者简介 宋瑶(1996—),女,硕士研究生,研究领域为计算机视觉、图像分割,E-mail:840978010@qq.com;刘俊(1977—),男,教授,硕士生导师,CCF会员,研究领域为计算机视觉、图像处理。
  • 相关文献

参考文献3

二级参考文献11

共引文献171

同被引文献57

引证文献14

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部