期刊文献+

基于GAN–UNet的矿石图像分割方法 被引量:21

Ore image segmentation method based on GAN–UNet
在线阅读 下载PDF
导出
摘要 在选矿生产过程中,磨机给矿粒度对磨矿分级效率影响重大,是一个关键的控制参数.由于矿石表面不规则、棱线较多,同时存在矿石间堆叠的问题,给基于图像的矿石粒度检测带来极大困难.本文提出一种基于GAN–UNet的矿石图像分割方法,针对矿石图像棱线易引起矿石边缘错误识别的问题,采用生成对抗网络进行图像分割,将U–Net作为图像分割生成器网络,使用人工标记的矿石边缘图像作为真实图像,随后构建判别器网络以判断图像来源,同时将判别器误差与生成器误差通过加权形式引入网络训练中,直到判别器难以判断分割图像来源,获得满足条件的生成器.对实际工业生产矿石图像的分割结果表明,本方法与U–Net网络相比提升了网络对矿石边缘的识别能力,减小了图像分割误差,对矿石区域的相对误差平均值降至8.20%. In the beneficiation process,the particle size of the ore has significant influence on the efficiency of grinding classification process,and it is a key parameter for control.Due to the irregular surface of the ore,many ridges,and the problem of stacking between ores,it is difficult to obtain accurate ore areas in image-based ore size detection methods.A GAN–UNet based ore image segmentation method is proposed in this study.Considering the problem that there are many edges in the ore image,it is easy to cause wrong recognition of ore edge,generative adversarial net is used for image segmentation,the U–Net is used as the image segmentation generator network,using images with artificially marked ore edges as real images.Then a discriminator network is constructed to determine the source of the image.At the same time,the discriminator error and generator error are introduced into the network training in a weighted form.A generator that meets the conditions will be obtained until it is difficult to determine the source of the segmented image by the discriminator.Comparing to the U–Net network,the segmentation results by using actual industrial ore image show that this method improves the ability to recognize the ore edges and reduces the error of image segmentation,and the average value of relative error for ore area is reduced to 8.20%.
作者 李鸿翔 王晓丽 阳春华 熊伟 LI Hong-xiang;WANG Xiao-li;YANG Chun-hua;XIONG Wei(School of Automation,Central South University,Changsha Hunan 410083,China;Changsha Research Institute of Mining and Metallurgy Co Ltd,Changsha Hunan 410012,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2021年第9期1393-1398,共6页 Control Theory & Applications
基金 国家自然科学基金项目(61673401) 国家自然科学基金基础科学中心项目(61988101)资助.
关键词 生成对抗网络 深度学习 矿石图像分割 generate adversarial networks deep learning ore image segmentation
作者简介 通信作者:王晓丽,E-mail:xlwang@csu.edu.cn,Tel.:+8613607448746。
  • 相关文献

参考文献2

二级参考文献23

  • 1张秀君,孙晓丽.分段线性变换增强的自适应方法[J].电子科技,2005,18(3):13-16. 被引量:18
  • 2杨帆,廖庆敏.基于图论的图像分割算法的分析与研究[J].电视技术,2006,30(7):80-83. 被引量:16
  • 3Felzenszwalb P F, Huttenlocher D P. Efficient Graph- based Image Segmentation [ J] International Journal of Computer Vision, 2004,59 ( 2 ) : 167-181.
  • 4Koen E A,Jasper R R, et al. Segmentation as Selective Search for Object Recognition [C ]//Proceedings of IEEE ICCV ' I 1. Barcelona, Spain: IEEE Press, 2011 : 1879-1886.
  • 5Ren Xiaofeng,Malik J. Learning a Classification Model for Segmentation [ C ]//Proceedings of the 9th IEEE Inter- national Conference on Computer Vision. Washington D. C., USA: IEEE Computer Society ,2003 : 10-17.
  • 6Li Zhenguo, Wu Xiaoming, Chang Shih Fu. Segmentation Using Superpixels: A Bipartite Graph Partitioning App- roach [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE Press ,2012:789-796.
  • 7Wang Xiaofang, Li Huibin. A Graph-cut Approach to Image Segmentation Using an Affinity Graph Based on 0-sparse Representation of Features [ C ]//Proceedings of the 20th IEEE International Conference on Image Processing. Melbourne, Australia: IEEE Press, 2013: 4019-4023.
  • 8Lowe D. Object Recognition from Local Scale-invariant Features [ C ]//Proceedings of the 7th IEEE International Conference on Computer Vision. Washington D. C., USA : IEEE Press, 1999 : 1150-1157.
  • 9Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31 (2) :210-227.
  • 10Zhang Lei, Yang Meng, Feng Xiangchu. Sparse Repre- sentation or Collaborative Representation: Which Helps Face Recognition? [C]//Proceedings of IEEE Inter- national Conference on Computer Vision. Barcelona,Spain : IEEE Press, 2011:471-478.

共引文献34

同被引文献172

引证文献21

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部