期刊文献+

改进鱼群算法机器人几何参数标定 被引量:2

Geometric Parameter Calibration of Industrial Robot Based on Improved Fish School Algorithm
在线阅读 下载PDF
导出
摘要 针对传统人工鱼群算法(AFSA)在解决工业机器人标定过程中存在的收敛速度慢、容易陷入局部寻优、得到的结果不稳定的问题,用变步长自适应的人工鱼群算法(SA-IAFSA)来优化参数辨识过程。对算法的目标函数进行改进,用MD-H方法建立了机器人误差模型,将几何误差辨识问题转换为高维非线性方程。实验对比了AFSA与SA-IAFSA的参数标定结果,结果表明:采用SA-IAFSA的辨识效果优于AFSA,同时加快了收敛速度,能获得较为准确的参数误差值,可使机器人绝对定位精度提升38.96%。 The traditional artificial fish school algorithm(AFSA)has the problems of slow convergence speed,easy to fall into local optimization and unstable results in the process of industrial robot calibration.To solve this problem,the variable step size adaptive artificial fish school algorithm(SA-IAFSA)is used to optimize the parameter identification process.The objective function of the algorithm is improved,the robot error model is established by the MD-H method,and the geometric error identification problem is converted into a high-dimensional nonlinear equation.The experiment compares the parameter calibration results of AFSA and SA-IAFSA,and the results show that the identification effect of SA-IAFSA is better than AFSA,and at the same time it speeds up the convergence speed,can obtain more accurate parameter error values,and can improve the absolute positioning accuracy of the robot by 38.96%.
作者 赵铁军 杨伟林 ZHAO Tie-jun;YANG Wei-lin(School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110870,China)
出处 《机械工程与自动化》 2021年第5期166-168,共3页 Mechanical Engineering & Automation
关键词 机器人标定 改进鱼群算法 几何误差 robot calibration improved fish school algorithm geometric error
作者简介 赵铁军(1967-),男,辽宁沈阳人,教授,博士,主要研究方向:机器人技术及运用、等离子特种加工技术。
  • 相关文献

参考文献4

二级参考文献45

  • 1张仲海,王多,王太勇,林锦州,蒋永翔.采用粒子群算法的自适应变步长随机共振研究[J].振动与冲击,2013,32(19):125-130. 被引量:22
  • 2孙俊,方伟,吴小俊,等.量子行为粒子群优化:原理及其应用[M].北京:清华大学出版社,2011.
  • 3李晓磊,钱积新.人工鱼群算法:自下而上的寻优模式[c]//过程系统工程年会论文集.2001:76-82.
  • 4Xiao J M,Zheng X M,Wang X H,et al.A Mdified Artificial Fish-Swam Algorithm[C]∥Proceedings of the 6th World Congress on Intelligent Control and Automation.Dalian,2006:3456-3460.
  • 5Si He,Nabil Belacel,Habib Hamam,et al.Fuzzy Clustering with Improved Artificial Fish Swarm Algorithm[C]∥International Joint Conference on Computational Sciences and Optimization 2009.Hainan,2009(2):317-321.
  • 6Manber U.Introduction to Algorithms:A Creative Approach[M].Milano,Italy:Addison-Wesley,1989.
  • 7Krishnanand K N,Ghose D.Glowworm swarm optimisation:a new method for Optimising motilmodal functions[J].International Journal of Computational Intelligence Studies,2009,1(1):93-119.
  • 8Jiang Jing-qing,Bo Yu-ling,Song Chu-yi,et al.Hybrid Algorithm Based on Particle Swarm Optimization and Artificial Fish Swarm Algorithm[J].Lecture Notes in Computer Science,2012,7:607-614.
  • 9郑晓鸣.人工鱼群算法的改进及应用[D].上海海事大学2006
  • 10G. Calafiore,M. Indri,B. Bona.Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation. Journal of Robotic Systems . 2001

共引文献153

同被引文献27

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部