期刊文献+

基于Galerkin法研究应力波作用下复合材料板的动力学失稳

Dynamic Instability of Composite Plate under Stress Wave Based on Galerkin Method
在线阅读 下载PDF
导出
摘要 基于Kirchhoff薄板理论和Hamilton原理,考虑应力波效应,对含初始几何缺陷的三边简支、一边固支的复合材料板,建立了振动控制方程,得到了其屈曲临界荷载表达式。采用MATLAB编程进行数值计算,讨论了初始几何缺陷、初相位、铺层角度、屈曲模态阶数及铺层层数对板屈曲临界荷载的影响。结果表明:复合材料板的屈曲临界载荷随临界长度增大、铺设厚度减小、初始几何缺陷系数增大、振型函数初相位减小而减小。此外,复合材料板的各层铺层角度与荷载作用方向的夹角越小,屈曲临界载荷越大,当板的对称铺设层数达到7层时,临界荷载趋于稳定。 Based on the Kirchhoff thin plate theory and Hamilton principle,the vibration control equation of composite plate is established.The equation is simply supported on three sides and fixed on one side with initial geometric imperfections.The expression of buckling critical load is obtained.The numerical calculation is carried out by MATLAB programming.The effects of initial geometric imperfections,initial phase,ply angle,buckling mode order and layer number on the critical buckling load of the plate are discussed.Results show that the critical buckling load is decrease with the increasing of the critical length,the decreasing of the laying thickness,the increasing of the initial geometric defect coefficient,and the decreasing of the initial phase of the mode function.In addition,the smaller the angle between the laying angle of each layer and the load direction is,the greater the buckling critical load is.And the buckling critical load tends to be stable when the layer number of symmetrical laminate reaches seven.
作者 王志鹏 韩志军 王龙飞 WANG Zhipeng;HAN Zhijun;WANG Longfei(College of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China;College of Biomedical Engineering,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China)
出处 《高压物理学报》 CAS CSCD 北大核心 2021年第5期93-101,共9页 Chinese Journal of High Pressure Physics
基金 国家自然科学基金(11802195)。
关键词 复合材料板 应力波效应 初始几何缺陷 屈曲 临界荷载 composite plate effect of stress wave initial geometric defect buckling critical load
作者简介 王志鹏(1994-),男,硕士,主要从事非线性动力屈曲研究.E-mail:694596123@qq.com;通信作者:韩志军(1964-),男,博士,教授,主要从事非线性动力屈曲研究.E-mail:13073578705@126.com。
  • 相关文献

参考文献2

二级参考文献60

  • 1Timoshenko, S. P. and Gere, J. M. Theory of Elastic Stability, 2nd ed., McGraw-Hill, New York (1963).
  • 2Leissa, A. W. and Kang, J. H. Exact solutions for vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses. International Journal of Mechanical Sciences, 44, 1925 1945 (2002).
  • 3Civalek, O., Korkmaz, A., and Demir, C. Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges. Advances in Engineering Software. 41(4), 557-560 (2010).
  • 4Xiang, Y., Zhao, Y. B., and Wei, G. W. Levy solutions for vibration of multi-span rectangular plates. International Journal of Mechanical Sciences, 44, 1195-1218 (2002).
  • 5Azimi, S., Hamilton, J. F., and Soedel, W. The receptance method applied to the free vibration of continuous rectangular plates. Journal of Sound and Vibration, 93(1), 9-29 (1984).
  • 6Mizusawa, T. and Kajita, T. Vibration of continuous skew plates. Journal of Earthquake Engineering and Structural Dynamics, 12, 847-850 (1984).
  • 7Kim, C. S. and Dickinson, S. M. The flexural vibration of line supported rectangular plate systems. Journal of Sound and Vibration, 114(1), 129 142 (1987).
  • 8Liew, K. M. and Lain, K. Y. Vibration analysis of multi-span plates having orthogonal straight edges. Journal of Sound and Vibration, 147(2), 225-264 (1991).
  • 9Bathe, K. J. and Wilson, E. L. Numerical Methods in Finite Element Analysis, Prentic-Hall Englewood Cliffs, New Jersey (1976).
  • 10Fryba, L. Vibration of Solids and Structures Under Moving Loads, 3rd ed., Thomas Telford Ltd., Czech Republic (1999).

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部