期刊文献+

Terminal Traffic Flow Prediction Method Under Convective Weather Using Deep Learning Approaches 被引量:3

基于深度学习的对流天气下终端区流量预测方法
在线阅读 下载PDF
导出
摘要 In order to improve the accuracy and stability of terminal traffic flow prediction in convective weather,a multi-input deep learning(MICL)model is proposed.On the basis of previous studies,this paper expands the set of weather characteristics affecting the traffic flow in the terminal area,including weather forecast data and Meteorological Report of Aerodrome Conditions(METAR)data.The terminal airspace is divided into smaller areas based on function and the weather severity index(WSI)characteristics extracted from weather forecast data are established to better quantify the impact of weather.MICL model preserves the advantages of the convolution neural network(CNN)and the long short-term memory(LSTM)model,and adopts two channels to input WSI and METAR information,respectively,which can fully reflect the temporal and spatial distribution characteristics of weather in the terminal area.Multi-scene experiments are designed based on the real historical data of Guangzhou Terminal Area operating in typical convective weather.The results show that the MICL model has excellent performance in mean squared error(MSE),root MSE(RMSE),mean absolute error(MAE)and other performance indicators compared with the existing machine learning models or deep learning models,such as Knearest neighbor(KNN),support vector regression(SVR),CNN and LSTM.In the forecast period ranging from 30 min to 6 h,the MICL model has the best prediction accuracy and stability. 为提高对流天气下终端区流量预测的准确性和稳定性,提出了一种多输入深度学习模型(Multiinput deep learning,MICL)。在前人研究的基础上,扩展了影响终端区交通流的天气特征集,涵盖天气预报数据和机场气象报告(Meteorological Report of Aerodrome Conditions,METAR)数据。将终端空域根据功能划分为较小的空域,并通过天气预报数据建立天气危险指数(Weather severity index,WSI)特征,以更好地量化天气的影响。MICL模型结合了卷积神经网络(Convolution neural network,CNN)和长短期记忆网络(Long shortterm memory,LSTM)模型的优点,采用双通道分别输入WSI数据和METAR报告数据,可以充分反映终端区天气的时间与空间分布特征。以广州终端区在典型对流天气下运行的真实历史数据设计多场景实验,结果表明MICL模型与K近邻算法(Knearest neighbor,KNN)、支持向量回归(Support vector regression,SVR)、CNN、LSTM等既有机器学习或深度学习模型相比,在均方误差(Mean squared error,MSE)、均方根误差(Root MSE,RMSE)和平均绝对误差(Mean absolute error,MAE)等性能指标上表现优秀,在30 min至6 h不等的预测时间范围内均具有最佳的预测精度和稳定性。
作者 PENG Ying WANG Hong MAO Limin WANG Peng 彭瑛;王洪;毛利民;王鹏(南京航空航天大学民航学院,南京211106;南京莱斯信息技术股份有限公司,南京210014)
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期634-645,共12页 南京航空航天大学学报(英文版)
基金 supported by the Civil Aviation Safety Capacity Building Project.
关键词 air traffic management traffic flow prediction convective weather deep learning 空中交通管理 交通流量预测 对流天气 深度学习
作者简介 Corresponding author:彭瑛,received the B.S.degree in air traffic management and dispatch from Nanjing University of Aeronautics and Astronautics(NUAA)in 2003 and the Ph.D.degree in air traffic management and dispatch from NUAA in 2014.She joined the College of Civil Aviation,NUAA in 2003.She is currently the director of the Airspace and Flow Collaborative Research Office of the National Air Traffic Control Flight Flow Management Technology Key Laboratory.Her research is focused on airspace capacity assessment and relevant fields.E-mail address:py423@sina.com.
  • 相关文献

参考文献4

二级参考文献15

  • 1徐肖豪,韩峰,戴福青.空中交通流量统计和预测系统的设计与实现[J].中国民航学院学报,2005,23(4):1-5. 被引量:8
  • 2徐冰,崔德光.空中交通流量管理预测分析系统的研究与开发[J].科学技术与工程,2006,6(7):840-843. 被引量:3
  • 3MOHAMMAD M, HASHEM R, ZAHI M. Short-term prediction of traffic volume in urban arterials [ J ]. Journal of Transportation Engineering, 1995, 121 (3):249-254.
  • 4NIGEL P. Long-term route traffic forecasts and flight schedule pattern for a medium-sized European airport [ J ]. Journal of Air Transport Management, 2002, 8 ( 5 ) : 313-324.
  • 5Federal Aviation Administration. Terminal area forecast reports (2001-2015) [ R]. FAA-APO-00-7, Washington D. C. : Federal Aviation Administration, 2001.
  • 6EUROCONTROL, Long-term forecast: IFR flight movements 2006-2025 [ R ]. DAP/DIA /STATFOR Doc216, Brussels: EUROCONTROL Statistics and Forecast Service, 2006.
  • 7CHANG R, LEQU R, LU C. Distribution transformer load modeling using load research data [ J ]. IEEE Transactions on Power Delivery, 2002, 17(2) : 655-661.
  • 8中国民用航空总局规划发展财务司编.从统计看民航1996-2007[M].北京:中国民航出版社,2007:1-154.
  • 9翟英俊.空中交通流量动态预测与分析研究[D] .南京航空航天大学民航学院,2009.
  • 10EUROCAT-X System/Segment Specification[Z] ,Rev J.

共引文献31

同被引文献24

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部