期刊文献+

基于改进HK模型的社交网络舆情演化 被引量:6

RESEARCH ON THE PUBLIC OPINION EVOLUTION OF SOCIAL NETWORK BASED ON THE IMPROVED HK MODEL
在线阅读 下载PDF
导出
摘要 传统网络舆情演化研究中,网络结构平均聚类系数较小,平均路径长度较大,且个体之间的相对权威性相等。针对这种情况,提出一种基于个体相对权威性的改进HK(Hegsekmann-Krause)模型来对个体间的权威性进行量化,同时构建更符合实际社交网络性质的网络拓扑结构。实验结果表明:该模型随着有限信任阈值增大,演化后的最终观点数量减少;随着平均节点度增大,观点以更快的速度趋于一致;该模型能够有效提高网络平均聚类系数、降低平均路径长度,同时舆情演化效果与传统HK模型一致。 In the research of traditional network public opinion evolution,the average clustering coefficient of the network structure is small,the average path length is large,and the relative authority between individuals is equal.Therefore,this paper proposes an improved HK model based on individual relative authority to quantify the authority between individuals and builds a network topology that is more in line with the nature of the actual social network.The experimental results show that as the bounded confidence threshold increases,the number of final opinions after evolution will be less;as the average node degree of the network increases,the views will tend to be consistent at a faster speed.This model can effectively improve the network average clustering coefficient and reduce the average path length.At the same time,the evolution effect of public opinion of this model is consistent with the traditional HK model.
作者 马永军 柴梦瑶 Ma Yongjun;Chai Mengyao(College of Artificial Intelligence,Tianjin University of Science&Technology,Tianjin 300457,China;Food Safety Management and Strategy Research Center,Tianjin University of Science&Technology,Tianjin 300222,China)
出处 《计算机应用与软件》 北大核心 2021年第9期86-91,共6页 Computer Applications and Software
基金 天津市教委社会科学重大项目“大数据背景下食品安全网络舆情研究”(2017JWZD19) 天津市科技计划项目(17KPXMSF00140)。
关键词 个体相对权威性 HK模型 平均节点度 有限信任阈值 社交网络 Individual relative authority HK model Average degree of node Bounded confidence threshold Social network
作者简介 马永军,教授,主研领域:智能信息处理,食品安全;柴梦瑶,硕士生。
  • 相关文献

参考文献7

二级参考文献183

  • 1吴闻莺.微博网舆论聚合效应研究——微博围观、微博极化与微博动员[J].大连理工大学学报(社会科学版),2013,34(1):133-136. 被引量:36
  • 2李冬梅,郭德俊.动态系统研究方法在社会心理学中的应用[J].心理学探新,2005,25(1):54-57. 被引量:7
  • 3K.Sznajd-Weron,J.Sznajd.Opinion Evolution in Closed Com-munity[J].Int.J.Mod.Phys.C,2000,11(6):1157-1165.
  • 4F.Vazquez,P.L.Kapivsky,S.Redner.Constrained Opinion Dy-namics:Freezing and Slow Evolution[J].J.Phys.A.Gen,2003,36:61-68
  • 5Serge Galam.Minority Opinion Spreading in Random Geometry[J].Eur.Phys.J.B,2002,25(4):403-406
  • 6Christopher Musselle.Opinion Formation Dynamics And The In-fluence Of The Media[J].http://bccs.bristol.ac.uk/toPro-gramme/_project/2008/Chris_Musselle_S08/
  • 7Daniel Ramirez-Cano,Jeremy Pitt.Follow the Leader:ProfilingAgents in an Opinion Formation Model of Dynamic Confidenceand Individual Mind-sets[C].In Proceedings of the IEEE/WIC/ACM international conference on Intelligent Agent Tech-nology,2006:660-667
  • 8Shuguang Suo,Yu Chen.The Dynamics of Public Opinion inComplex Networks[J].Journal of Artificial Societies and SocialSimulation,2008,11(4):2
  • 9Jan Lorenz.Consensus Strikes Back in the Hegselmann-KrauseModel of Continuous Opinion Dynamics Under Bounded Confi-dence[J].Journal of Artificial Societies and Social Simulation,2006,9(1)
  • 10GUO Long,CHANG Yun-feng,CAI Xu.The Evolution of O-pinions on Scale Free Networks[J].Front.Phys.China,2006(4):506-509

共引文献133

同被引文献59

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部