期刊文献+

文本图像倾斜角度检测的深度卷积神经网络方法 被引量:3

Deep Convolution Neural Network Method for Skew Angle Detection in Text Images
原文传递
导出
摘要 文本图像倾斜校正是文字识别前端的重要预处理环节。为了克服现有方法的倾斜角度检测范围只在-90°~90°的缺点,将文本图像倾斜角度检测问题转换为倾斜角度类检测问题,利用深度卷积神经网络的分类功能,选取适当的损失函数,设计了一阶段二分类和多阶段多分类的检测结构,实现了多种文本图像倾斜角度类的检测,进而得到了文本图像的倾斜角度范围。实验结果表明,倾斜角度类的准确率、召回率和精确率都在0.93以上。利用经典深度学习的方法对经过倾斜校正后的文本图像进行文字识别,识别精确率比校正前有大幅度的提升。 Text image skew correction is an important preprocessing step in the front-end of character recognition.To overcome the disadvantage in the limited range of tilt angle detection of the existing methods which is only-90--90°,this study transforms the text image skew angle detection problem into a skew angle class detection problem.Several types of skew angle classes of text images are detected using the classification function of deep convolution neural network by selecting the appropriate loss function and designing the detection structures of onestage two classification and multi-stage multi-classification,and then getting the tilt angle range of the text image.The experimental results show that the tilt angle class’s detection accuracy,recall,and precision rates are all above0.93.The classical deep learning method is used to recognize the text image after skew correction.Moreover,the recognition accuracy is greatly improved compared to that before the correction.
作者 郭从洲 李可 朱奕坤 童晓冲 王习文 Guo Congzhou;Li Ke;Zhu Yikun;Tong Xiaochong;Wang Xiwen(Department of Basic,Information Engineering UniversityZhengzhou,Henan 450001,China;School of Surveying and Mapping,Information Engineering University,Zhengzhou,Henan 450001,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第14期172-179,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(41671409)。
关键词 图像处理 文本图像 倾斜角度 卷积神经网络 倾斜校正 文字识别 image processing text image skew angle convolution neural network skew correction character recognition
作者简介 通信作者:郭从洲,czguo0618@sina.cn。
  • 相关文献

参考文献7

二级参考文献32

  • 1李政,杨扬,颉斌,王宏.一种基于Hough变换的文档图像倾斜纠正方法[J].计算机应用,2005,25(3):583-585. 被引量:21
  • 2张晓芸,朱庆生,曾令秋.基于直线拟合的文本倾斜检测算法[J].计算机应用研究,2005,22(6):251-253. 被引量:9
  • 3潘喆,吴一全.二维指数熵图像阈值选取方法及其快速算法[J].计算机应用,2007,27(4):982-985. 被引量:23
  • 4Yan H. Skew correction of document images using inner line cross -correlation [J ]. Computer Vision, Graphics and Image Processing : Graphical Models and Image Processing, 1993, 55 ( 6 ) : 538-543.
  • 5Postl W. Detection of linear oblique structure and skew scan in digitized documents[ C ]. Proceedings of the 8th International Conference on Pattern Recognition, France:Paris, 1986. 687-689.
  • 6Ciardiello G, Scafur G. An experimental system for office document handling and text recognition[C]. Proceedings of the 9th International Conference on Pattern Recognition, Italy: Rome, 1988. 739-743.
  • 7Doermann D,Liang Jian,Li Huiping.Progress in camera-based document image analysis[C].Proc of the 7th International Conference on Document Analysis and Recognition.Edinburgh,Scottland:[s n] ,2003:606-616.
  • 8L O′Gorman.The document spectrum for page layout analysis,IEEE Trans[J].Pattern Anal.Mach.Intell,1993,15(11):1162-1173.
  • 9P Y Yin.Skew detection and block classification of printed documents[J].Image Vision Comput,2001,19(8):567-579.
  • 10Chandan Singh,Nitin Bhatia,Amandeep Raur.Hough transform based fast skew detection and accurate skew correction methods[J].Pattern Recognition,2008,41:3528-3546.

共引文献87

同被引文献34

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部