期刊文献+

基于神经网络优化算法的分数阶PI^(λ)D^(μ)控制 被引量:5

Fractional order PI^(λ)D^(μ) control based on neural network optimization algorithm
在线阅读 下载PDF
导出
摘要 针对传统的PID控制器控制效果欠佳以及分数阶PI^(λ)D^(μ)控制器参数复杂难以整定的问题,设计了一种基于误差反向传播(Back propagation,BP)神经网络算法的分数阶PI^(λ)D^(μ)控制器。首先,将分数阶PI^(λ)D^(μ)控制器数字化,然后通过BP神经网络算法调节突触权值,经调整后的输出量作为分数阶PI^(λ)D^(μ)控制器的参数值,最后分别采用分数阶和整数阶作为被控对象进行实验仿真,仿真结果证明了神经网络分数阶PI^(λ)D^(μ)控制器比传统PID控制器的具有超调量小、上升时间快、稳定性好的优点。 To solve the problems of poor control effect of traditional PID controller and the complex parameters of fractional order PI^(λ)D^(μ) controller,a fractional order PI^(λ)D^(μ) controller based on back propagation(BP)neural network algorithm is designed.Firstly,the fractional order PI^(λ)D^(μ)controller is digitized,and the synaptic weight of neural network is adjusted by BP algorithm.The adjusted output of neural network is taken as the parameter of fractional order PI^(λ)D^(μ) controller.Finally,the fractional and integer order are respectively used as the controlled object.In the experiment simulation,the simulation results prove that the neural network fractional order PI^(λ)D^(μ) controller has the advantages of small overshoot,fast rise time and better stability than the traditional PID controller.
作者 谢玲玲 秦龙 Xie Lingling;Qin Long(School of Electrical Engineering,Guangxi University,Nanning 530004,China)
出处 《南京理工大学学报》 CAS CSCD 北大核心 2021年第4期515-520,共6页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61863003,61561007) 广西自然科学基金(2019GXNSFAA245019)。
关键词 分数阶PI^(λ)D^(μ) 自适应 误差反向传播神经网络 参数整定 fractional order PI^(λ)D^(μ) self-adjusting back propagation neural network parameter tuning
作者简介 谢玲玲(1980-),女,博士,副教授,主要研究方向:电力电子的分析与控制,E-mail:xielingling@gxu.edu.cn。
  • 相关文献

参考文献12

二级参考文献110

  • 1李创,王景成.基于改进差分进化的分数阶PI~λD~μ参数整定[J].控制工程,2010,17(4):504-508. 被引量:4
  • 2曹军义,梁晋,曹秉刚.基于分数阶微积分的模糊分数阶控制器研究[J].西安交通大学学报,2005,39(11):1246-1249. 被引量:17
  • 3孙进,侯振义,卢家林.逆变电源技术及其发展概况[J].电源世界,2006(8):27-30. 被引量:12
  • 4RICBARD L. Magin. Fractional calculus in bioengineering[J]. Critical Reviews in Biomedical Engineering, 2004, 32(1): 1 - 193.
  • 5PODLUBNY I. Fractional-order systems and PI^λD^μ-controllers[J]. IEEE Trans on Automatic Control, 1999, 44(1): 208 -214.
  • 6LV Z F. Time-domain simulation and design of siso feedback control systems[D]. Taiwan: National Cheng kung University, 2004.
  • 7CAPONTTO R, FORTUNA L, PORTO D. A new tuning strategy for a non integer order pid controller[C]//IFAC2004, Bordeaux, France: [s.n.], 2004.
  • 8MONJE C A, VINAGRE B M, CHEN Y Q, et al. Proposals for fractional PI^λD^μ tuning[C]//The First IFAC Symposium on Fractional. Bordeaux, France: [s.n], 2004.
  • 9MAC B, HORI Y. Design of fractional order pid controller for robust two-inertia speed control to torque saturation and load inertia variation[C]//IPEMC. Xi'an, China: [s.n.], 2003.
  • 10XUE D Y, CHEN Y Q. A comparative introduction of four fractional order controllers[C]//Proc of the 4th World Congress on Intelligent Control and Automation. Piscataway, NJ, USA: IEEE Press, 2002: 3228 - 3235.

共引文献279

同被引文献49

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部